学习笔记第五节:莫比乌斯反演

正题

      现在在这里再来讲述一遍莫比乌斯反演。

      莫比乌斯反演基于一条公式\sum_{d\mid n} \mu(d) =[n=1]

      不懂的小伙伴先去找数论函数的介绍看看。

      假如现在要求\sum_{i=1}^n\sum_{j=1}^m [gcd(i,j)=1],n<=m<=10^{7}.开到更大可以用杜教筛来做

      那么我们可以把后面的[gcd(i,j)=1],换成\sum_{d\mid gcd(i,j)} \mu(d)

      就变成了

       \sum_{i=1}^{n}\sum_{j=1}^m\sum_{d\mid gcd(i,j)}\mu(d) \\=\sum_{i=1}^{n}\sum_{j=1}^m\sum_{d\mid i\ \Lambda \ d\mid j}\mu(d) \\=\sum_{d=1}^{n}\mu(d)\ floor(n/i)\ floor(m/i)

      那么我们又可以预处理\mu(d)的前缀和,又可以对后面的东西进行整除分块。

      时间就是O(\sqrt n)了。(认为n,m同阶)。

      程序中就是直接按照定义欧拉筛出mu(d),然后做一遍前缀和,后面整除分块本人喜欢这种写法。

mu[1]=1;
for(int i=2;i<=maxn;i++){
	if(!vis[i]) {p[++p[0]]=i;mu[i]=-1;}
	for(int j=1;j<=p[0] && (temp=i*p[j])<maxn;j++){
		vis[temp]=true;
		if(i%p[j]==0) break;
		mu[temp]=-mu[i];
	}
	mu[i]+=mu[i-1];
}
scanf("%d",&T);
while(T--){
	scanf("%d %d",&n,&m);
	l=1;
	while(l<=n){
		r=min(n/(n/l),m/(m/l));
		ans+=(long long)(n/l)*(m/l)*(mu[r]-mu[l-1]);
		l=r+1;
	}
	printf("%lld\n",ans);
}

      其实莫比乌斯反演是这样的:

      有h=f*1,*为狄利克雷卷积。

      现在已知h,求f。

      那么两边同时成上\mu,得到f=h*\mu  。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值