学习笔记第三十五节:数论进阶以及狄利克雷卷积

正题

      这节学习笔记我们来研究一下数学

数论

       先介绍两个狭义上的集合:Z_n,Z_n^*,前者表示的是完全剩余系,也就是{0,1,..,n-1},而后者表示的是简化生育系,也就是保留下来那些与n互质的数。比如说:Z_6=\begin{Bmatrix} 0,1,2,3,4,5 \end{Bmatrix},Z_6^*=\begin{Bmatrix}1,5 \end{Bmatrix};

      接着我们记\varphi(n)[1,n]内与n互质的数。显然\begin{vmatrix} Z_n^* \end{vmatrix}=\varphi(n)

    逆元 

      若x*a\equiv a*x\equiv 1\ (\mod n),那么我们称a为x在模n意义下的逆元。

      可以证明x在模n意义下有逆元,当且仅当x\perp n(互质)。

      假设gcd(x,n)=p>1且存在x*a\equiv 1\ (\mod n)

      又因为p\mid (x*a)\mod \ n,所以矛盾。

      而且我们可以证明当x\perp n时,x在模n意义下有逆元。

      因为对于p_i,p_j\in Z_n^*(i\neq j),x*p_i\not\equiv x*p_j(\mod n),这条式子十分显然,在两边同时乘上x的逆元即可。

      然后,因为x\perp n;\ \ \ p_i,p_j\perp n,所以x*p_i都与n互质。又因为之间不相等,所以\begin{Bmatrix} p_i*x \end{Bmatrix} *a\equiv \begin{Bmatrix} p_i \end{Bmatrix}(\mod n,p_i\in Z_n^*)(感性理解)。

      所以肯定存在一个数a使得x*a\equiv 1(\mod n)

    裴蜀定理

      ax+by=1有整数解当且仅当a\perp b

      证明:就相当于求是否存在一个x使得,ax\equiv 1(\mod b)

      推论:ax+by=d有整数解当且仅当gcd(a,b)\mid d

      证明:先证ax+by=gcd(a,b),这个很明显,两边同时除以gcd(a,b)即可,那么对于推论的话,我们在同时给解(x,y)同时乘上一个\frac{d}{gcd(a,b)}即可。

    欧拉定理

      a\perp n,那么a^{\varphi(n)}\equiv 1\ (\mod n)

      首先我们上面已经证明过,\begin{Bmatrix} p_i*x \end{Bmatrix} *a\equiv \begin{Bmatrix} p_i \end{Bmatrix}(\mod n,p_i\in Z_n^*),所以两边同时除以p_i即可得到多出来的x^{\varphi(n)}\equiv 1(\mod n)

    阶

      若a\perp n , a^k\equiv 1(\mod n),那么我们称这个最小的k为a在模n意义下的阶,记为<a>=k,通常模n意义下省略不写。

      阶的性质:<a>=\varphi(n) \and <a>\mid \varphi(n)

      前一个是显然的,后面那一个应该怎么证?

      其实也非常简单,假设<a>\not\ \mid \varphi(n),那么a^{\varphi(n)\mod <a>}\equiv 1(\mod n)

      然而这个a的指数比<a>小又不为0,所以矛盾。

   原根

      当<a>=\varphi(n)的时候,a为n的原根。

      原根的性质:由抽代知识,只有n=1,2,4,p^k,2p^k时,是有原根的。

      证明我也不会。

   调和级数

      1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\approx \ln n

   唯一分解定理

      n=q_1^{k_1}*...*q_m^{k_m}

数论函数

      下面我们来讲讲常见的数论函数,数论函数,也就是只研究正整数的函数。

      积性函数a\perp b\to f(ab)=f(a)*f(b).

      完全积性函数f(ab)=f(a)*f(b)(a,b\in N)

    欧拉函数

      \varphi(n)=n*\frac{q_1-1}{q_1}*...*\frac{q_m-1}{q_m}

      欧拉函数明显是一个积性函数,因为后面的部分只会在f(a)或者f(b)中出现,而且前面也是积性的。

    莫比乌斯函数

      \mu(n)=\begin{Bmatrix} (-1)^m,if\ squarefree\\ 0,otherwise\end{Bmatrix}

      squarefree的意思就是没有平方因子,也就是说所有的k_i=1

      莫比乌斯函数也是一个积性函数,也就是说\mu(n)=\mu(p_1^{k_1})*...*\mu(p_m^{k_m}),证明:有平方因子很明显是0,如果没有,那么结果也很明显是(-1)^m。也很容易证明它不是一个完全积性函数。

      莫比乌斯函数的性质(很重要!!!)

      性质:\sum_{d\mid n} \mu(d)=[n=1]

      其中n里面是一个表达式,如果为真,那么式子的值为1,否则为0.

      证明:

      当n=1的时候,显然。

      当n\neq 1时,n=p_1^{k_1}*...*p_m^{k_m}\mu(d)\neq 0当且仅当,n_0=p1*...*p_m,d\mid n_0

      因为不含平方因子就肯定时n0的因子。

      那么我们可以把mu(d)\neq 0的d分为两类,一类是有p1的,一类是没有p1的,也就是说,我们式子可以这样写:

      \sum_{d\mid n} \mu(d)=\sum_{d\mid n_0}\mu(d)=\sum_{d\mid \frac{n_0}{p_1}}[\mu(d)+\mu(dp_1)]=0

      因为多一个p1相当于乘多一个-1,这个性质也是莫比乌斯反演和杜教筛的核心!

   另外几类常见的函数

      幺元函数:e(n)=[n=1]

      常值函数:1(n)=1

      恒等函数:id(n)=n

      除数函数:\sigma_k(n)=\sum_{d\mid n} d^k

狄利克雷卷积

      介绍完一大堆数论函数,我们开始来介绍重点:狄利克雷卷积。

      狄利克雷卷积,数论函数f与g的卷积为h,记为f*g=h

      狄利克雷卷积,h(n)=\sum_{d\mid n} f(d)*g(\frac{n}{d}) 

      性质1:f,g为积性函数,那么h也为积性函数。

      证明:暴力展开即可。

      性质2:\sum_{d\mid n}\varphi(d)=n

      证明:也就是说\varphi*1=id,因为\varphi,1,id都为积性函数,所以,我们只需要证id(p_i^{k_i})=\sum_{d\mid p_i^{k_i}}\varphi(d)

      又因为d肯定为质数的非负整数次幂,所以id(p_i^{k_i})=\sum_{d\mid p_i^{k_i}}\varphi(d)=1+(p_i-1)+p_i*(p_i-1)+...+p_i^{k_i-1}*(p_i-1)=p_i^{k_i}

      证。毕

      史上大难题!!!

      给定f与g,求f*g的前n项。求O(n)做法竟不可得!没错,按定义枚举是O(n\ln n),而且在函数无法优化的情况下就是最优解。

总结

      关于数论进阶和狄利克雷卷积其实就是那么多东西。要想学习更多狄利克雷卷积的东西,去学习笔记找莫比乌斯反演和杜教筛。

       

      

  • 4
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值