[HEOI2016/TJOI2016]求和,洛谷P4091,第二类斯特林数与FFT

正题

      这题的目的很明了:

      求\sum_{i=0}^n\sum_{j=0}^mS(i,j)*2^j*j!

      首先我们要知道

S(i,j)=\frac{1}{j!}\sum_{k=0}^j (-1)^kC_j^k*(j-k)^i

,关于证明可以参考我的博客

      然后换进去:

      \sum_{i=0}^n\sum_{j=0}^m2^j\sum_{k=0}^{j}C_j^k*(j-k)^i

      交换枚举顺序:

      \sum_{j=0}^n2^j\sum_{k=0}^jC_j^k\sum_{i=0}^n(j-k)^i \\=\sum_{j=0}^n2^j\sum_{k=0}^j\frac{j!\sum_{i=0}^n(j-k)^i}{k!(j-k)!} \\=\sum_{j=0}^n2^j*j!\sum_{k=0}^j\frac{\sum_{i=0}^n (j-k)^i}{k!(j-k)!} \\=\sum_{j=0}^n2^j*j!\sum_{k=0}^j\frac{1}{k!}*\frac{\sum_{i=0}^n(j-k)^i}{(j-k)!}

      然后就可以发现后面的东西可以直接设为F(j),而设G(k)=\frac{1}{k!},H(j-k)=\frac{\sum_{i=0}^n(j-k)^i}{(j-k)!}

      那么F=G*H

      预处理G函数,和H函数,H函数的上面相当于一个等比数列求和,当j-k=0时,等于0.j-k=1时,等于n+1。否则等于\frac{(j-k)^{n+1}-1}{j-k-1}

      然后NTT即可。

      这题的关键就是知道第二类斯特林数的通项公式?

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std;

const int maxn=1e5;
int n;
const long long mod=998244353;
long long fac[maxn+10],inv[maxn+10];
long long f[maxn*3+10],g[maxn*3+10];
int where[maxn*3+10];
int lim,l;

long long ksm(long long x,long long t){
	long long tot=1;
	while(t){
		if(t%2) (tot*=x)%=mod;
		(x*=x)%=mod;
		t/=2;
	}
	return tot;
}

void dft(long long *now,int idft){
	for(int i=0;i<lim;i++) if(i<where[i]) swap(now[i],now[where[i]]);
	long long w,wn,a,b;
	for(int l=2;l<=lim;l*=2){
		wn=ksm(3,(mod-1)/l);
		if(idft==-1) wn=ksm(wn,mod-2);
		for(int i=0;i<lim;i+=l){
			w=1;
			for(int x=i,y=i+l/2;y<i+l;x++,y++,w=w*wn%mod){
				a=now[x],b=now[y]*w%mod;
				now[x]=(a+b)%mod;
				now[y]=((a-b)%mod+mod)%mod;
			}
		}
	}
}

int main(){
	scanf("%d",&n);
	fac[0]=1;for(int i=1;i<=n;i++) fac[i]=fac[i-1]*i%mod;
	inv[n]=ksm(fac[n],mod-2);for(int i=n-1;i>=0;i--) inv[i]=inv[i+1]*(i+1)%mod;
	f[0]=1;for(int i=1;i<=n;i++) f[i]=((i%2?-1:1)*inv[i]+mod)%mod;
	g[0]=1;g[1]=n+1;for(int i=2;i<=n;i++) g[i]=(ksm(i,n+1)-1)*ksm(i-1,mod-2)%mod*inv[i]%mod;
	lim=1;l=0;
	while(lim<n+n+1) lim*=2,l++;
	for(int i=0;i<lim;i++) where[i]=((where[i>>1]>>1)|((i&1)<<(l-1)));
	dft(f,1);dft(g,1);
	for(int i=0;i<lim;i++) f[i]=f[i]*g[i]%mod;
	dft(f,-1);
	for(int i=0;i<lim;i++) f[i]=f[i]*ksm(lim,mod-2)%mod;
	long long ans=0;
	for(int i=0;i<=n;i++) (ans+=ksm(2,i)*fac[i]%mod*f[i]%mod)%=mod;
	printf("%lld",ans);
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值