【LuoguP4609】建筑师(FJOI2016)-第一类斯特林数

测试地址:建筑师
做法:本题需要用到第一类斯特林数。
我们先来分析“可见”这个性质。因为建筑的高度各不相同,所以两个可见建筑之间,一定是若干个比这两个可见建筑高度要小的建筑。而我们知道高度为 n n 的建筑无论如何都会被看到,而从这个建筑往两边的可见建筑高度显然是不断减小的。这样,我们把从左(右)边能看到的每一个可见建筑,与它右(左)边下一个可见建筑之间的部分看做一个集合,因为高度为n的建筑无论如何都可见所以我们就不管它了,这样我们就相当于要把 1 1 ~n1这些数分成 A+B2 A + B − 2 个集合,每个集合都是一个排列,且要求排列的首位(或末位)必须是集合内的最大值,求方案数。
注意到,任何两个互不相同的圆排列,都可以转成两个互不相同的满足上述条件的排列,这就说明圆排列和上述满足条件的排列是等价的。而把 n1 n − 1 个元素拆成 A+B2 A + B − 2 个圆排列的方案数,这就是第一类斯特林数的定义。具体来说,第一类斯特林数 s(i,j) s ( i , j ) i i 个元素拆成j个圆排列的方案数)的递推式如下:
s(i,j)=s(i1,j1)+(i1)s(i1,j) s ( i , j ) = s ( i − 1 , j − 1 ) + ( i − 1 ) s ( i − 1 , j )
边界条件为 s(0,0)=1 s ( 0 , 0 ) = 1 。这个递推式的含义是,分别讨论 i i 这个元素是被分在新的圆排列里,还是插入之前的某个圆排列里。如果被分在新的圆排列里,方案数就是s(i1,j1),而如果插入之前的某个圆排列里,有 i1 i − 1 个位置可供插入,所以方案数是 (i1)s(i1,j) ( i − 1 ) s ( i − 1 , j )
所以上面问题的答案就很显然是 s(n1,A+B2) s ( n − 1 , A + B − 2 ) 。但是还没有结束,我们意识到,把分成的这些集合,分配到高度为 n n 的建筑的左边和右边,每一种集合的分配方案就会产生s(n1,A+B2)种方案。而强制左边有 A A 个建筑可见,就是强制要向左边分配A1个集合,所以最后的答案就是:
CA1A+B2×s(n1,A+B2) C A + B − 2 A − 1 × s ( n − 1 , A + B − 2 )
O(na+a2) O ( n a + a 2 ) a=A+B a = A + B )预处理,然后 O(1) O ( 1 ) 回答每个询问即可。
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
int T,mxn=0,mxab=0,n[200010],a[200010],b[200010];
ll s[50010][210]={0},C[210][210]={0};

void init()
{
    scanf("%d",&T);
    for(int i=1;i<=T;i++)
    {
        scanf("%d%d%d",&n[i],&a[i],&b[i]);
        mxn=max(mxn,n[i]);
        mxab=max(mxab,a[i]+b[i]);
    }

    s[0][0]=1;
    for(ll i=1;i<=mxn;i++)
        for(ll j=1;j<=i&&j<=mxab;j++)
            s[i][j]=(s[i-1][j-1]+(i-1)*s[i-1][j])%mod;

    C[0][0]=1;
    for(ll i=1;i<=mxab;i++)
    {
        C[i][0]=1;
        for(ll j=1;j<=i;j++)
            C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
    }
}

void work()
{
    for(int i=1;i<=T;i++)
        printf("%lld\n",s[n[i]-1][a[i]+b[i]-2]*C[a[i]+b[i]-2][a[i]-1]%mod);
}

int main()
{
    init();
    work();

    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值