KNN算法 文章目录 KNN算法概述距离计算应用 概述 KNN算法本身简单有效,它是一种lazy-learning算法。 分类器不需要使用训练集进行训练,训练时间复杂度为0。 KNN分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为n,那么KNN的分类时间复杂度为 O ( n ) O(n) O(n)。 总原则:物以类聚,人以群分。 距离计算 应用 对于未知类别属性数据集中的点进行分类 计算已知类别数据集中的点与当前点的距离按照距离依次排序选取与当前点距离最小的K个点确定前K个点所在类别的出现概率返回前K个点出现频率最高的类别作为当前点的预测分类