撕掉“玩具“标签,大模型工程化落地如何破局

导读丨本文聚焦于大模型工程化落地的关键突破,系统性地从理念到实践深入分析如何将大模型技术从理论转化为实践,并推动其在多变且复杂的行业环境中广泛应用,最终带来实际的业务成果和技术创新。

作者:腾讯游戏专家工程师 李飞宏

当前,全球游戏产业规模已超过2000亿美元,其背后产生的数据呈指数级增长。随着以DeepSeek、OpenAI为代表的大模型技术迅速崛起,为游戏行业带来前所未有的智能化机遇,驱动着企业步入智能发展的新阶段。

然而,大模型在实际落地过程中依然面临众多工程化挑战:首先,模型稳定性较差,结果难以全面掌控,在业务应用时会带来诸多风险;其次,企业业务场景更新迅速、数据变化快,难以快速适应不断更新的应用场景,在构建与升级面向企业的知识库方面也会遇到较大挑战。这导致不少企业在实际业务应用中陷入“实验玩具”的阶段,无法有效地将人工智能技术转化为真正的生产力。

要从“实验玩具”向真正的“工程化落地”迈进,大模型的工程化落地能力成为关键突破点。企业必须系统化地构建和升级智能数据基础设施,通过大模型工程化理念和工程建设,最终推动大模型在丰富、复杂的企业场景中实现规模化应用,从而创造实际的业务价值。

大模型工程化的系统架构

为了应对大模型在实际应用中所面临的工程化挑战,通过设计一套综合的系统架构,旨在解决大模型在稳定性、适应性和知识库构建等方面的问题,从而实现大模型在各类企业场景中的规模化应用。大模型工程化的系统架构分为七个关键部分,包括数据存储、安全访问控制、流程引擎、模型底座、知识库资产、应用场景和平台运营。大模型工程化建设的系统架构如图所示。

● 数据存储:负责数据的持久化、检索查询及分析的能力。一般分为OLTP(联机事务处理)、OLAP(联机分析处理)和其他类型。OLTP用于支持针对单个用户的高频率的数据点查询,适用于日常业务事务;OLAP用于深入的数据分析,满足复杂的数据查询和分析需求;其他类型用于涵盖图数据库以及对象存储的能力,用于处理复杂的关系数据和网络分析的场景。

● 安全访问控制:负责数据安全和隐私合规的能力。在数据安全方面,涵盖访问控制、代码检测、安全审计以及数据加密等功能,确保所有数据操作都在严格的安全框架内进行,从而防止未授权访问和数据泄露。在隐私合规方面,包括隐私数据掩码、数据过滤和数据脱敏等功能,确保处理和存储的数据符合相关法规要求,尤其是在处理涉及个人隐私敏感信息时,能有效保护个人隐私不被泄露。

● 流程引擎:负责管理和优化多个关键技术流程协作的能力。这部分包含了工作流管理和任务协调功能。在工作流管理方面,通过设立监控指标,确保工作流的步骤的顺畅执行。在任务协调方面,确保不同任务间的依赖关系,优化资源配置,确保任务及时完成。

● 模型底座:负责模型管理和兼容评估的能力。在模型管理方面,支持公共模型及私有模型等多个模型的适配。在兼容评估方面,持续评估模型的版本迭代之间的兼容性,确保查询的准确性和系统的整体性能。

● 知识库资产:负责资产及知识库的构建和推荐引擎的能力。这部分涵盖了指标管理和特征管理,旨在定义和维护关键的分析和决策支持指标及特征。推荐引擎通过图谱查询推理与实体关系管理功能的融合运用,能够实现对复杂数据的关联分析以及深入的查询推理,进而为用户提供更为精准的数据洞察能力。此外,资产推荐及上下文感知功能结合上下文信息,提供个性化的资产推荐,从而确保针对用户需求的数据资产的推荐结果更精准。

● 应用场景:负责对接具体应用场景(如代码生成、智能问答、客户支持和分析助手等)的能力。这部分会根据不同的应用场景,制定统一的服务策略,此服务策略可以针对每个场景的独特需求和挑战进行服务组合,从而确保系统能够在各种情况下提供稳定可靠的服务。

● 平台运营:负责流程优化和资产的日常运营。在流程优化方面,通过监控系统关键指标,分析和优化工作流程,不断提升系统的效率和效果。在资产运营方面,通过收集日常运营中的正例和负例,推动资产的建设完善,确保资产的可靠性。从而持续推动在各种应用场景中的高效运作和持续优化。

大模型工程化的设计原则基于模块化设计,使系统各部分可以独立更新和优化,确保灵活性与可扩展性,同时不会影响其他模块的正常运作。

大模型工程化的实践案例

为了更好地理解大模型工程化如何在实际业务中落地应用,我们提供了一个具体的实践案例:通过大模型生成SQL代码为例,展示了大模型工程化系统架构如何解决企业在数据处理、信息安全、业务流程优化和知识库构建等多个维度的挑战,并最终实现业务价值的提升。具体业务流程可以抽象为三个关键环节:用户需求“说得清”、业务知识“推得准”和业务结果“效果好”。 其业务流程图,如图所示。

● 用户需求“说得清”: 这一环节关注的是用户需求的转化过程。首先,将用户需求标准化为一个清晰的业务需求模板,包括从用户的需求出发,进行意图识别与需求解析,筛选出与数据分析无关的部分,并从中提取出一些关键的核心要点。标准化的需求模板确保了大模型可以准确地理解用户的要求。这一步将整理后的需求问题输入到大型模型中,实现对用户意图的准确识别。

● 业务知识“推得准”: 这一环节涉及业务知识与用户需求匹配的过程。首先,针对用户的需求,利用业务数据资产结合知识图谱推荐模型进行精准的数据推荐。然后,通过推荐结果,获得相应的表结构数据及资产指标,并将其提供给大模型。这一步确保了输入大模型的数据准确无误。接着,大模型基于提供的数据和业务知识,生成相应的SQL代码,并对其进行校验,以确保代码的正确性和有效性。

● 业务结果“效果好”: 这一环节涵盖代码执行、结果分级及系统运营的全过程。首先,对于生成并校验后的SQL代码,通过任务调度系统进行执行,同时结合严格的访问控制和安全审计确保代码及操作的安全性。然后,输出SQL代码的执行结果,并供用户查看与分析。最后,在后续运营过程中,正确的案例将被纳入到资产需求沉淀的运营流程,为未来的业务提供参考和价值。同时,错误的案例将被记录保存,用于后续的优化和修正工作。

实施策略

基于大模型驱动的数据智能生成SQL系统为例,围绕“工具开发→工作流编排→回归评估优化”三个关键阶段明确具体的实施步骤,使大模型系统从最初的功能组件逐步成熟完善为可持续运营和不断优化的企业级应用方案。具体实施阶段如下:

阶段1:工具开发

这一阶段主要目标是构建并集成支撑大模型SQL代码自动生成应用的基础工具,形成初步可用的产品组件。具体包括:

● 需求模板标准化

为了让业务人员更容易将日常语言需求转化为大模型能够理解的标准化模板,开发并推出统一的业务需求规范工具,例如:

用户自然语言需求:“帮我统计下上个月XX游戏的新增用户数量趋势以及用户来源分布情况。”

标准化模板自动提炼结果:

时间范围:上个月(如:2023年9月)

需求指标:XX游戏,新增用户数量趋势、用户来源渠道分布

数据对象明确:用户行为表、新用户注册表、渠道分布记录表

业务口径:按照注册时间和地域维度进行统计分析的口径定义

● 业务知识与数据推荐服务

建设数据资产指标库和知识图谱引擎,接入企业已有的数据治理工具和资产管理系统,通过自然语言检索技术、向量检索等智能化技术实现数据表、指标、维度的自动推荐和元数据信息完全匹配。例如:

用户需求中涉及“新增用户”,推荐关联表如: user_register_info,user_behavior_facts

需求涉及“渠道分布”,推荐关联维度表:channel_base,channel_user_map

明确推荐数据指标定义和口径标准,形成可供大模型直接调用的数据资产接口

● SQL生成及执行

使用大语言模型(如GPT-4、DeepSeek),通过Prompt工程和微调训练,将标准需求模板与业务元数据推送给大模型,实现SQL代码自动生成工具。例如:

输入明确的需求模板+精准的数据表和指标定义,大模型自动生成对应SQL代码。

同时结合规则类安全校验工具自动预检查代码质量,如语法检查、SQL性能优化风险检测,确保生成的SQL代码初步可用且安全。

阶段2:工作流编排

这一阶段主要目标是将工具进行统一协调与集成,通过可视化或交互式操作流程,实现界面友好的完整系统:

● 任务编排与调度:建设任务编排与自动化执行模块,确保SQL代码生成、审核、执行全过程自动化推进并高效完成业务数据查询,提供结果反馈。

● 安全审计和访问控制服务:通过系统级访问权限管理与数据脱敏访问规则,嵌入到工作流编排和执行中,对SQL执行提供安全审计、访问权限界定,确保数据使用安全合规。

● 业务操作可视化:通过将自然语言需求输入和标准化处理,让用户简单输入即可完成需求转换、推荐数据资产与指标、大模型生成SQL代码的全流程,实现便捷操作。

阶段3:回归评估优化

本阶段的核心目标是建立度量指标,来确保系统的回归评估和持续改进。不断优化和适配业务,指导大模型与工具系统的迭代升级优化,沉淀数据资产及知识库,提升系统整体效果。

● 运营数据沉淀:系统对每天产生的SQL代码执行情况进行自动记录,对于生成且执行结果正确的SQL,与对应业务需求问题关联存档,形成“成功SQL代码库”和案例库沉淀,对于执行失败或报错的SQL统一记录到问题库当中,在人工干预后加入标注用于后续问题修复和模型微调。

● 模型效果监测与迭代优化:建设大模型服务效能观测指标,自动监控大模型代码生成准确率、执行性能指标等,制定关键性能评估标准(如准确率、可靠率和复用率),定期反馈给数据和AI团队,为大模型的Prompt优化、微调持续提供数据依据。如发现大模型对特定需求无法有效生成SQL,持续优化Prompt模板并追加人工标注案例对模型进行微调。

通过上述实施策略,将大模型工程化应用到实际业务场景中,可以有效解决数据处理、信息安全、业务流程优化和知识库构建等多方面的挑战,从而提升企业整体的智能化水平和业务价值。

大模型工程化总结

随着大模型技术的快速发展落地,企业在大模型工程化应用通过模块化设计和灵活的系统架构,使大模型能够更快、更准确地适应业务需求,带来更实际、更稳定的业务价值。

同时,企业员工可以更便捷、更直观地使用大模型工具开展各类日常业务任务,如自动代码生成、智能数据分析以及客户服务等。这不仅大幅降低了人工操作与维护成本,也将加速企业业务能力的整体提升,驱动企业迈入更加智能高效的全新发展阶段。

延伸阅读推荐

腾讯游戏数据团队发布了《大模型工程化:大模型驱动下的数据体系》技术书籍,总结沉淀腾讯游戏数据工作的实践经验及技术方法论,系统阐述了如何利用大模型技术打造高效的数据资产体系,为大模型时代的企业新基建和智能化转型提供参考。


关于腾讯游戏数据

腾讯游戏数据(海外品牌名称Deltaverse)沉淀20余年、700+款大型游戏的数据工作经验,基于AI大模型及数据科学能力,为全球游戏业务和企业提供专业智能的数据平台及定制化解决方案,覆盖治理、开发、分析全链路及业务全场景,助力实现高效增长。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值