OI中的数学问题

目录:

acwing 808. 最大公约数

acwing 809. 最小公倍数

acwing 808. 最大公约数

#include<bits/stdc++.h>

using namespace std;
int gcd(int a,int b)
{
    if(a%b == 0)return b;
    else return gcd(b,a%b);
}
int main()
{
    int a,b;
    cin>>a>>b;
    cout<<gcd(a,b);
    return 0;
}

思路:

辗转相除法(欧几里得算法)
前置定理:gcd(a,b)=gcd(b,a mod b)

证明:

假设 c=gcd(a,b),则必存在 n,m 使 a=mc,b=nc;

令 r=a mod b,即存在 kk,使 r=a−kb=mc−knc=(m−kn)cr=a−kb=mc−knc=(m−kn)c;

故 gcd(b,a mod b)=gcd(b,r)=gcd(nc,(m−kn)c)=gcd(n,m−kn)c;

则 c 亦为 b 与 a mod b 的公约数;

假设 d=gcd(n,m−kn),则存在 x,y,使 n=xd,m−kn=ydn=xd,m−kn=yd; 故 m=yd+kn=yd+kxd=(y+kx)dm=yd+kn=yd+kxd=(y+kx)d;

故有 a=mc=(y+kx)dc,b=nc=xdca=mc=(y+kx)dc,b=nc=xdc,得 gcd(a,b)=gcd((y+kx)dc,xdc)=dc;

因为 gcd(a,b)=c,所以 d=1;

即 gcd(n,m−kn)=1,可得 gcd(b,a mod b)=c;

故 gcd(a,b)=c=gcd(b,a mod b)gcd(a,b)=c=gcd(b,a mod b)。

因为 gcd(a,b)=gcd(b,a mod b),所以我们可以一直将 gcd(a,b) 转化为 gcd(x,0),此时x 为 gcd(a,b)。

acwing 809. 最小公倍数

输入两个整数 a 和b,请你编写一个函数,int lcm(int a, int b),计算并输出 a 和 b 的最小公倍数。

输入格式

共一行,包含两个整数 a 和 b。

输出格式

共一行,包含一个整数,表示 a 和 b的最小公倍数。

输入样例:

6 8

输出样例:

24

思路:

最小公倍数 = 两数乘积 / 最大公约数

#include<bits/stdc++.h>
using namespace std;
int lcm(int &a,int &b)
{
    int sum = a*b;
    for(int i = a;i <= sum;i++)
    {
        if(i%a == 0 && i%b == 0) sum = i;
    }
    return sum;
}
int main()
{
    int a,b;
    cin>>a>>b;
    cout<<lcm(a,b);
    return 0;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值