1738. 找出第 K 大的异或坐标值

题目:

给你一个二维矩阵 matrix 和一个整数 k ,矩阵大小为 m x n 由非负整数组成。

矩阵中坐标 (a, b) 的  可由对所有满足 0 <= i <= a < m 且 0 <= j <= b < n 的元素 matrix[i][j]下标从 0 开始计数)执行异或运算得到。

请你找出 matrix 的所有坐标中第 k 大的值(k 的值从 1 开始计数)。

思路:

用一个二维列表s记录所有“矩阵中坐标 (a, b) 的 值”,设s[i+1][j+1]表示左上角矩阵(0,0)至(i,j)的异或和,那么如下图所示为例:

可得公式:

s[i+1][j+1] = s[i][j+1] \oplus s[i+1][j] \oplus s[i][j] \oplus matrix[i][j]

代码如下:

class Solution:
    def kthLargestValue(self, matrix: List[List[int]], k: int) -> int:
        m = len(matrix)
        n = len(matrix[0])
        s = [[0] * (n+1) for _ in range(m+1)]
        for i in range(0, m):
            for j in range(0, n):
                s[i+1][j+1] = s[i][j+1] ^ s[i+1][j] ^ s[i][j] ^ matrix[i][j]
        s_ = [item for row in s for item in row]   # 展成一维列表
        s_.sort()   # 排序
        return s_[-k]   # 返回第k大的值


提交通过:

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值