数据挖掘的之matplotlib

数据挖掘的之matplotlib:


学习matplotlib工具

Matplotlib
2.1 Matplotlib之HelloWorld

print("hello world")
结果:hello world
什么是Matplotlib - 画二维图表的python库

​ mat - matrix 矩阵
​ 二维数据 - 二维图表
​ plot - 画图
​ lib - library 库
​ matlab 矩阵实验室
​ mat - matrix
​ lab 实验室
​ 2.1.2 为什么要学习Matplotlib - 画图
​ 数据可视化 - 帮助理解数据,方便选择更合适的分析方法
​ js库 - D3 echarts
​ 奥卡姆剃刀原理 - 如无必要勿增实体

2.1.3 实现一个简单的Matplotlib画图
#导入包
import matplotlib.pyplot as plt
%matplotlib inline
#创建画布
plt.figure()
#绘制图像
plt.plot([1, 0, 9], [4, 5, 6])
#显示图像
plt.show()

在这里插入图片描述

​ 折线图绘制与显示

# 展现某个地区一周的天气,比如从星期一到星期日的天气温度如下
# 1、创建画布
plt.figure(figsize=(20, 8), dpi=80)
# 2、绘制图像
plt.plot([1, 2, 3, 4, 5, 6, 7], [17, 17, 18, 15, 11, 11, 13])

# 保存图像
plt.savefig("test78.png")

# 3、显示图像
plt.show()

在这里插入图片描述

上面的折现图还有一些缺陷,缺少辅助显示层,添加下x(横坐标),y(纵坐标)

先分析,上面里面没有横坐标和纵坐标,完善原始折线图1(辅助显示层)

import random #导入随机数的库
#1.准备数据x,y
x=ranger(60)
y=[random.uniform(15,18) for i in x]#列表推导式使纵坐标是随机产生
#创建画布
plt.figure(figsize=(20,8),dpi=80)#igsize:指定figure的宽和高,dpi参数指定绘图对象的分辨率
#绘制图像
plt.plot(x,y)
#修改x,y刻度
#准备x的刻度说明
x_label=["11点{}分".format(i) for i in x]
plt.xticks(x[::5],x_label[::5])
plt.yticks(range(0,40,5))

#添加网格显示
plt.grid(linestyle="--",alpha=0.5)
#添加描述信息
plt.xlabel("时间变化")
plt.ylabel("温度变化")
plt.title("某个城市11点到12点每分钟的温度变化状况")

#显示图
plt,show()

在这里插入图片描述

完善原始折线图2(图像层)
# 需求:再添加一个城市的温度变化
# 收集到北京当天温度变化情况,温度在1度到3度。 

# 1、准备数据 x y
x = range(60)
y_shanghai = [random.uniform(15, 18) for i in x]
y_beijing = [random.uniform(1, 3) for i in x]

# 2、创建画布
plt.figure(figsize=(20, 8), dpi=80)

# 3、绘制图像
plt.plot(x, y_shanghai, color="r", linestyle="-.", label="上海")
plt.plot(x, y_beijing, color="b", label="北京")

# 显示图例
plt.legend()

# 修改x、y刻度
# 准备x的刻度说明
x_label = ["11点{}分".format(i) for i in x]
plt.xticks(x[::5], x_label[::5])
plt.yticks(range(0, 40, 5))

# 添加网格显示
plt.grid(linestyle="--", alpha=0.5)

# 添加描述信息
plt.xlabel("时间变化")
plt.ylabel("温度变化")
plt.title("上海、北京11点到12点每分钟的温度变化状况")

# 4、显示图
plt.show()

在这里插入图片描述

2.2.4 多个坐标系显示-plt.subplots(面向对象的画图方法)
# 需求:再添加一个城市的温度变化
# 收集到北京当天温度变化情况,温度在1度到3度。 

# 1、准备数据 x y
x = range(60)
y_shanghai = [random.uniform(15, 18) for i in x]
y_beijing = [random.uniform(1, 3) for i in x]

# 2、创建画布
# plt.figure(figsize=(20, 8), dpi=80)
figure, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 8), dpi=80)

# 3、绘制图像
axes[0].plot(x, y_shanghai, color="r", linestyle="-.", label="上海")
axes[1].plot(x, y_beijing, color="b", label="北京")

# 显示图例
axes[0].legend()
axes[1].legend()

# 修改x、y刻度
# 准备x的刻度说明
x_label = ["11点{}分".format(i) for i in x]
axes[0].set_xticks(x[::5])
axes[0].set_xticklabels(x_label)
axes[0].set_yticks(range(0, 40, 5))
axes[1].set_xticks(x[::5])
axes[1].set_xticklabels(x_label)
axes[1].set_yticks(range(0, 40, 5))

# 添加网格显示
axes[0].grid(linestyle="--", alpha=0.5)
axes[1].grid(linestyle="--", alpha=0.5)

# 添加描述信息
axes[0].set_xlabel("时间变化")#axes[0].方法名()  axes[1]
axes[0].set_ylabel("温度变化")
axes[0].set_title("上海11点到12点每分钟的温度变化状况")
axes[1].set_xlabel("时间变化")
axes[1].set_ylabel("温度变化")
axes[1].set_title("北京11点到12点每分钟的温度变化状况")

# 4、显示图
plt.show()

在这里插入图片描述

绘制数学函数图像
import numpy as np
#1.准备x,y数据
x=np.linspace(-1,1,1000)
y=2*x*x
#创建画布
plt.figure(figsiz=(20,8),dpi=80)
#绘制图像
plt.plot(x,y)
#添加网格显示
plt.grid(linestyle="--",alpha=0.5)
#4.显示图像
plt.show()

在这里插入图片描述

散点图绘制
# 需求:探究房屋面积和房屋价格的关系

# 1、准备数据
x = [225.98, 247.07, 253.14, 457.85, 241.58, 301.01,  20.67, 288.64,
       163.56, 120.06, 207.83, 342.75, 147.9 ,  53.06, 224.72,  29.51,
        21.61, 483.21, 245.25, 399.25, 343.35]

y = [196.63, 203.88, 210.75, 372.74, 202.41, 247.61,  24.9 , 239.34,
       140.32, 104.15, 176.84, 288.23, 128.79,  49.64, 191.74,  33.1 ,
        30.74, 400.02, 205.35, 330.64, 283.45]
# 2、创建画布
plt.figure(figsize=(20, 8), dpi=80)

# 3、绘制图像
plt.scatter(x, y)

# 4、显示图像
plt.show()

在这里插入图片描述

对比每部电影的票房收入
#1.准备数据
movie_name=['雷神3:诸神黄昏','正义联盟','东方快车谋杀案','寻梦环游记','全球风暴', '降魔传','追捕','七十七天','密战','狂兽','其它']
tickets=[73853,57767,22354,15969,14839,8725,8716,8318,7916,6764,52222]
#2.创建画布
plt.figure(figsize=(20,8),dpi=80)
#3.绘制柱状图
x_ticks=range(len(movie_name))
plt.bar(x_ticks,tickets,color=['b','r','g','y','c','m','y','k','c','g','b'])

#修改刻度
plt.xticks(x_ticks,movie_names)
#添加标题
plt.title("电影票房收入对比")
#添加网络显示
plt.grid(linestyle="--",alpha=0.5)
#显示图像
plt.show()

在这里插入图片描述

需求2-如何对比电影票房收入才更能加有说服力?```

# 1、准备数据
movie_name = ['雷神3:诸神黄昏','正义联盟','寻梦环游记']
​
first_day = [10587.6,10062.5,1275.7]
first_weekend=[36224.9,34479.6,11830]
​
 #2、创建画布
plt.figure(figsize=(20, 8), dpi=80)
​
 #3、绘制柱状图
plt.bar(range(3), first_day, width=0.2, label="首日票房")
plt.bar([0.2, 1.2, 2.2], first_weekend, width=0.2, label="首周票房")
​
 #显示图例
plt.legend()
​
 #修改刻度
plt.xticks([0.1, 1.1, 2.1], movie_name)
# 4、显示图像
plt.show()

在这里插入图片描述

直方图绘制

直方图介绍
组数:在统计数据时,我们把数据按照不同的范围分成几个组,分成的组的个数称为组数
组距:每一组两个端点的差
已知 最高175.5 最矮150.5 组距5
求 组数:(175.5 - 150.5) / 5 = 5

思路:

x = time
bins 组数 = (max(time) - min(time)) // 组距

# 需求:电影时长分布状况
# 1、准备数据
time = [131,  98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110, 116, 117, 110, 128, 128, 115,  99, 136, 126, 134,  95, 138, 117, 111,78, 132, 124, 113, 150, 110, 117,  86,  95, 144, 105, 126, 130,126, 130, 126, 116, 123, 106, 112, 138, 123,  86, 101,  99, 136,123, 117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 144, 139, 139, 119, 140,  83, 110, 102,123,107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144,  83, 123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114, 133, 137,  92,121, 112, 146,  97, 137, 105,  98, 117, 112,  81,  97, 139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110,105, 129, 137, 112, 120, 113, 133, 112,  83,  94, 146, 133, 101,131, 116, 111,  84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111, 133, 150]

# 2、创建画布
plt.figure(figsize=(20, 8), dpi=80)

# 3、绘制直方图
distance = 2
group_num = int((max(time) - min(time)) / distance)

plt.hist(time, bins=group_num, density=True)

# 修改x轴刻度
plt.xticks(range(min(time), max(time) + 2, distance))

# 添加网格
plt.grid(linestyle="--", alpha=0.5)

# 4、显示图像
plt.show()

在这里插入图片描述

饼图绘制
# 1、准备数据
movie_name = ['雷神3:诸神黄昏','正义联盟','东方快车谋杀案','寻梦环游记','全球风暴','降魔传','追捕','七十七天','密战','狂兽','其它']

place_count = [60605,54546,45819,28243,13270,9945,7679,6799,6101,4621,20105]

# 2、创建画布
plt.figure(figsize=(20, 8), dpi=80)

# 3、绘制饼图
plt.pie(place_count, labels=movie_name, colors=['b','r','g','y','c','m','y','k','c','g','y'], autopct="%1.2f%%")

# 显示图例
plt.legend()#这个必须要,不然就是椭圆

plt.axis('equal')

# 4、显示图像
plt.show()

在这里插入图片描述

上面的如果你要在python编译器运行每个都要导包

import matplotlib.pyplot as plt
如果这个包出错导入下面这个:
import matplotlib.pyplot as plt
%matplotlib inline
如何里面要用导numpy库,也导入numpy
import numpy as np
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Deng872347348

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值