机器学习项目实战(2)-信用卡交易数据欺诈检测

本文介绍了利用机器学习对信用卡交易数据进行欺诈检测的项目。数据集包含约28万笔交易,其中0.172%为欺诈交易。项目目标是构建反欺诈模型,通过PCA处理后的特征进行分析。文章讲解了matplotlib的图像输出,如散点图、柱状图等,并展示了数据统计分析、预处理、模型评估和混淆矩阵构建的过程。
摘要由CSDN通过智能技术生成

机器学习项目实战(2)-信用卡交易数据欺诈检测

项目背景:

数据集包含由欧洲人于2013年9月使用信用卡进行交易的数据。此数据集显示两天内发生的交易,其中284807笔交易中有492笔被盗刷。数据集非常不平衡,正例(被盗刷)占所有交易的0.172%。

项目目的

利用信用卡历史数据进行机器建模,构建反欺诈模型,预测新的信用卡被盗刷的可能性。

数据介绍

本任务,主要使用的数据为creditcard.csv
文件位置:/home/jovyan/pythonproject_data2/creditcard.csv。
img
数据有284807条数据。

特征V1,V2,… V28是使用PCA获得的主要组件,没有用PCA转换的唯一特征是“Class”和“Amount”。

  • 特征’Time’包含数据集中每个刷卡时间和第一次刷卡时间之间经过的秒数。
  • 特征’Class’是响应变量,如果发生被盗刷,则取值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Deng872347348

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值