机器学习项目实战(2)-信用卡交易数据欺诈检测
文章目录
项目背景:
数据集包含由欧洲人于2013年9月使用信用卡进行交易的数据。此数据集显示两天内发生的交易,其中284807笔交易中有492笔被盗刷。数据集非常不平衡,正例(被盗刷)占所有交易的0.172%。
项目目的
利用信用卡历史数据进行机器建模,构建反欺诈模型,预测新的信用卡被盗刷的可能性。
数据介绍
本任务,主要使用的数据为creditcard.csv
文件位置:/home/jovyan/pythonproject_data2/creditcard.csv。
数据有284807条数据。
特征V1,V2,… V28是使用PCA获得的主要组件,没有用PCA转换的唯一特征是“Class”和“Amount”。
- 特征’Time’包含数据集中每个刷卡时间和第一次刷卡时间之间经过的秒数。
- 特征’Class’是响应变量,如果发生被盗刷,则取值