机器学习之支持向量机

支持向量机(SVM)是一种优秀的分类模型,通过寻找最大间隔的决策边界来提高泛化能力。本文详细介绍了线性可分、线性、非线性支持向量机以及序列最小优化(SMO)算法。通过实例展示了SVM如何处理线性与非线性数据,并使用SMO算法优化求解过程。最后,还涵盖了支持向量回归的应用。
摘要由CSDN通过智能技术生成

机器学习之支持向量机

【简介】

支持向量机 (Support Vector Machine, SVM) 是由Vapnik等人于1995年提出来的,之后随着统计理论的发展,支持向量机SVM也逐渐受到了各领域研究者的关注,在很短的时间就得到了很广泛的应用。

支持向量机是被公认的比较优秀的分类模型。同时,在支持向量机的发展过程中,其理论方面的研究得到了同步的发展,为支持向量机的研究提供了强有力的理论支撑。

1. 线性可分支持向量机

线性二分类问题

线性二分类问题的本质上就是找到一条决策边界,将我们的数据分成两类。如下图:

在这里插入图片描述

图中的绿线与黄线都能很好的将图中的红点与蓝点给区分开。但是,哪条线的泛化性更好呢?可能你不太了解泛化性,也就是说,我们的这条直线,不仅需要在训练集(已知的数据)上能够很好的将红点跟蓝点区分开来,还要在测试集(未知的数据) 上将红点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Deng872347348

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值