机器学习之支持向量机
【简介】
支持向量机 (Support Vector Machine, SVM) 是由Vapnik等人于1995年提出来的,之后随着统计理论的发展,支持向量机SVM也逐渐受到了各领域研究者的关注,在很短的时间就得到了很广泛的应用。
支持向量机是被公认的比较优秀的分类模型。同时,在支持向量机的发展过程中,其理论方面的研究得到了同步的发展,为支持向量机的研究提供了强有力的理论支撑。
文章目录
1. 线性可分支持向量机
线性二分类问题
线性二分类问题的本质上就是找到一条决策边界,将我们的数据分成两类。如下图:
图中的绿线与黄线都能很好的将图中的红点与蓝点给区分开。但是,哪条线的泛化性更好呢?可能你不太了解泛化性,也就是说,我们的这条直线,不仅需要在训练集(已知的数据)上能够很好的将红点跟蓝点区分开来,还要在测试集(未知的数据) 上将红点