Python:numpy diff() 函数 实现邻行相减 或 邻列相减

import numpy as np

A = np.array([[1,2,3],[4,5,6]])
print("上面的减去下面的,结果整体少一行:")
print(np.diff(A,axis=0))

print("右边的减去左边的,结果整体少一列:")
print(np.diff(A,axis=1))

PythonNumPy库中,当你处理图像数据并执元素级别的相减操作时,遇到像素值小于0的情况,通常会应用数字图像处理中的“饱和加法”策略,即将负数像素值加上图像的最大值(如8位灰度图像是255)。这是为了保持结果像素值在合法范围内,同时不失真。 为了避免这种溢出饱和现象,你可以采用以下几种方法: 1. **强制正数运算**:首先对两个图像的每个像素值取绝对值再相减,这样可以确保结果总是非负的。之后,如果结果大于最大像素值,可以选择将超出部分舍去而不是加255。 ```python import numpy as np # 假设img1和img2是两个图像数组 diff = np.abs(img1 - img2) result = np.clip(diff, 0, 255) # 将超过255的部分截断到255 ``` 2. **使用浮点数计算**:如果你处理的是浮点数表示的图像,可以直接相减,因为浮点数范围更大,不会导致溢出。然后在需要转换回整数时,再进限制。 ```python if img1.dtype == 'uint8': # 确保都是整数类型 result = np.round(np.divide(np.add(img1, img2), 2)).astype('uint8') # 平均后再转换回8位 else: diff = img1 - img2 result = np.clip(diff, 0, 255).astype(img1.dtype) # 同样处理溢出并保持原始数据类型 ``` 3. **使用特定库的函数**:一些图像处理库,如`skimage`,提供了专门针对这类问题优化的函数,它们内部已经处理了这种边缘情况。 无论哪种方法,都需要根据你的应用场景选择最合适的处理方式。注意,图像减法可能会改变原图像的亮度和对比度,所以事先要考虑是否需要保留这些信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeniuHe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值