- 博客(19)
- 收藏
- 关注
原创 【图神经网络】消息传递
背景描述:商品有:商品1: 电子产品 - 智能手机;商品2: 家居用品 - 双人床;商品3: 服装配饰 - 运动鞋;商品4: 图书 - 小说;商品5: 食品 - 咖啡豆;商品6: 家电 - 液晶电视;商品7: 美妆 - 口红;商品8: 运动户外 - 自行车;商品9: 宠物用品 - 猫粮;商品10: 儿童玩具 - 拼图玩具Alice 购买了 智能手机 (商品1)Bob 购买了 双人床 (商品2)Charlie 购买了 运动鞋 (商品3)David 购买了 小说 (商品4)
2024-01-23 16:35:02 385 1
原创 【图神经网络】GAT
论文中说到,共享的可训练权重矩阵W的用处是为了将输入特征转换成高维特征以此获取足够的表达能力,这个权重矩阵是作用在每个节点上的。A的一阶连接节点其实只有橘黄色的节点,但是global graph attention还是会计算A与空白节点的关系,那我们只需要A与橘黄色节点的attention,该怎么办?只计算A节点与一阶邻居节点的 attention,此时获取到的就是关于节点A 的局部结构特征,大大减少了计算量。计算节点A与其他所有节点的attention ,但是会丢失图的结构特征,并且造成计算量很大。
2024-01-18 22:03:20 426
原创 【pytorch】tensorboard安装
pytorch:2.1.2 安装命令(conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia)运行之后会显示web网页,可在本地浏览器打开。(此处只运行了在本地浏览器打开的方式,跨主机的方式还没有用到,之后需要的话,会补充上)发生异常: ModuleNotFoundError。再次运行代码不会报错。
2024-01-17 16:42:26 862
原创 【leetcode-python】977.有序数组的平方 ,209.长度最小的子数组 ,59.螺旋矩阵。
思路:利用双指针,两个指针分别控制区间的左右元素。有序数组可能有三种情况:全部大于等于0;全部小于等于0;一部分大于0一部分小于0。
2023-11-10 21:08:38 61
原创 【leetcode-python】704. 二分查找、27. 移除元素。
如果不相等,则将fast指向的元素,赋值给slow指向的元素位置,即。快慢指针初始化的时候,同时指向第0号元素,fast快指针首先移动,如果。思路:利用双指针,一个快指针遍历数组,一个慢指针控制保留的数组。思路:利用双指针,两个指针分别控制区间的左右边界。,快慢指针同时移动一格,即。
2023-11-08 21:11:53 80
原创 【决策树】
小明大学毕业了来到一家银行当行长,上班第一天就有15位客人申请了贷款,刚刚入行的小明仔细整理了客户的基本信息。通过询问一系列的判断性问题,将一个复杂的问题划分为更简单的子问题来求解。1、首先不考虑任何标准,根据贷款结果,直接计算数据的基尼系数。如果按照少数服从多数为原则的话,结论就是有工作的就会被批准。如果按照少数服从多数为原则的话,结论就是有工作的就会被批准。说明在不考虑任何标准的情况下,数据是类似于随机生成的。当p(批准)=0.5,p(拒绝)=0.5,则。2、再考虑那些有工作的客户,没有工作的客户。
2023-06-19 16:40:50 184
原创 【卷积神经网络的简单理解】
而实际上这个次数是根据模型的需要而来的。除此之外,两种框架的批规范化计算本质上是一致的,都是对特征进行标准化,使其分布更加稳定,达到缓解梯度消失、加速训练和减轻过拟合的目的。除此之外,各个框架的池化计算本质都是一样的,都是通过最大值或平均值提取特征图中的主要特征,并实现特征图尺寸的下采样。除此之外,两者的批规范化本质和作用是一致的,都是用于激活值的标准化,以缓解梯度消失/爆炸问题,加速训练和减轻过拟合。除此之外,两者的池化计算原理是一致的,都是通过最大值或平均值运算实现特征图的下采样与主要特征的提取。
2023-06-14 17:09:35 304
原创 【树模型概述】
除此之外,树模型还被广泛应用于推荐系统、图像分割、对象检测等更加复杂的任务当中。通过与深度学习等算法的结合,树模型的效果进一步提高,应用场景也更加广泛。树模型(Tree Models)是一类基于决策树(Decision Tree)的机器学习算法。其主要特点是采用树形结构来展示分类规则或回归过程。,如容易过拟合,对小数据集的泛化能力稍差等。但通过集成的方式,如随机森林和GBDT可以很好地提高性能,这也是它们如此流行的原因。
2023-06-13 10:32:01 952
原创 信息量、信息熵、信息增益的简单理解
前面所定义的信息量是针对信源发出的某一个消息所产生的信息量,如果要衡量整个信源总体的信息量,应该使用整个概率分布对应的信息量的平均值,也就是信息量的期望,这也就是信息熵的定义。因此,随机变量X的信息熵计算方法为:
2023-06-07 19:29:07 699
原创 【论文】《Neural Point Process for Learning Spatiotemporal Event Dynamics》
提出了一个端到端的神经网络框架,可以直接对事件序列建模,学习时空动态和依赖关系,并最大化事件序列的联合概率。相比于传统的条件随机场和具有马尔科夫性质的模型,该模型可以学习更加复杂的时空联系,并生成更加全面且一致的新事件序列。总的来说,这是一篇提出创新性点过程建模方案与训练目标的论文,获得了很好的效果,为时空事件动态学习提供了一个很好的思路和框架。这篇论文提出了一种新的神经点过程模型(Neural Point Process),用于学习时空事件动态。
2023-06-07 10:06:04 197
原创 VAE(variational autoencoder)
所以,总体来说,VAE是一种强大的生成模型,通过学习潜在空间的分布,它可以进行更加真实的数据生成。相比于AE,VAE可以生成新的假样本,而不仅仅是重构输入。这使其在许多领域都非常实用。VAE是variational autoencoder的缩写,意为变分自动编码器。它是一种生成模型,通过学习潜在空间的分布来生成数据。
2023-06-06 23:04:15 1570
原创 torch.split()
所以,torch.split()是一个很有用的函数,可以轻松地将张量分割成任意形状和大小的张量列表,以用于后续处理。官网解释:Splits the tensor into chunks.——PyTorch中用于分割张量的函数。官网链接:https://pytorch.org/docs/stable/torch.html。作用:将一个多维张量分割成多个张量。
2023-06-06 20:10:20 5830 4
原创 torch.cumsum()
总之,torch.cumsum()是一个简单但非常实用的函数,可以计算张量的元素累积和,应用在许多领域中。行1加到行2: 1 + 4 = 5;2 + 5 = 7;列2加到列3: 3 + 3 = 6;9 + 6 = 15。列1加到列2: 1 + 2 = 3;作用:用于计算张量中的元素累积和。行1不变:1,2,3。
2023-06-06 18:48:23 989
原创 torch.triu
总之,torch.triu()是一个用于获取矩阵上三角或下三角部分的简单但非常有用的函数,可以用于遮挡、矢量化和矩阵操作等目的。作用:用于获取矩阵的上三角部分。取主对角线之上的元素。取对角线之上的元素。取对角线之下的元素。
2023-06-06 16:52:02 1472
原创 numpy.roll
总之,np.roll()是NumPy中一个简单但非常实用的函数,可以通过循环移动数组元素来实现环形缓冲、滚动窗口计算等效果。因为向右移动2个位置,所以1和2移动到了最后,4和5移动到了前面。因为向左移动1个位置,所以最后一个元素5移动到了最前面。np.roll()用于循环移动数组中的元素。
2023-06-06 16:30:52 692
《GETNext: Trajectory Flow Map Enhanced Transformer for Next POI》
2023-06-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人