Pytorch :OneHot encoding 标签转换 代码

import torch
import numpy as np
import pandas as pd

def convertLabel(datasetLabel):
    """
    Labels (product ratings) from the dataset are provided to you as
    floats, taking the values 1.0, 2.0, 3.0, 4.0, or 5.0.
    You may wish to train with these as they are, or you you may wish
    to convert them to another representation in this function.
    Consider regression vs classification.
    """
    # Convert to longTensor (i.e. int)
    convertedLabel = datasetLabel.type(torch.LongTensor)
    # Subtract 1 for classifier target values 0-4
    convertedLabel = torch.add(convertedLabel, -1)
    # Create Tensor as one-hot encoding (makes it easier to do MSE)
    oneHot = torch.zeros(convertedLabel.shape[0], 5)
    for index in range(oneHot.shape[0]):
        oneHot[index, convertedLabel[index]] = 1

    return oneHot  # one hot encoding

if __name__ == '__main__':
    data = np.array(pd.read_csv(r"D:\OCdata\HDI2.csv"))
    x = data[:, :-1]
    y = data[:, -1]
    x = torch.from_numpy(x).type(torch.FloatTensor)
    y = torch.from_numpy(y).type(torch.FloatTensor)
    y_OneHot = convertLabel(y)
    print(y_OneHot)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeniuHe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值