MMD的快速计算方法

这段代码使用RBF核函数计算有标签数据(self.labeled)和随机未标签数据(rand_unlabeled)之间的MMD。首先,它构造了UL_matrix和UU_matrix,分别表示两类数据之间的相似度矩阵。然后,计算每行的和并应用公式来得到MMD值,这有助于理解两类数据在特征空间中的分布差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 

self._K = rbf_kernel(X=self.X, gamma=0.1)

L_len = len(self.labeled)
            U_len = len(rand_unlabeled)
            UL_matrix = self._K[np.ix_(rand_unlabeled, self.labeled)]
            UL_matrix_sum = (np.sum(UL_matrix, axis=1)+1)* (U_len-1)/(U_len + L_len)
            UU_matrix = self._K[np.ix_(rand_unlabeled, rand_unlabeled)]
            UU_matrix_sum = (np.sum(UU_matrix, axis=1)-1)* (L_len-1)/(U_len + L_len)

            MMD = np.abs(UL_matrix_sum - UU_matrix_sum)

或者

            L_len = len(self.labeled)
            U_len = len(self.unlabeled)
            UL_matrix = self._K[np.ix_(self.unlabeled, self.labeled)]
            UL_matrix_sum = (np.sum(UL_matrix, axis=1)+1)* (U_len-1)/(U_len + L_len)
            UU_matrix = self._K[np.ix_(self.unlabeled, self.unlabeled)]
            UU_matrix_sum = (np.sum(UU_matrix, axis=1)-1)* (L_len-1)/(U_len + L_len)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeniuHe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值