力学
运动学
运动方程
- v = d x d t v=\frac{dx}{dt} v=dtdx
- a = d v d t = d 2 v d t 2 a=\frac{dv}{dt}=\frac{d^2v}{dt^2} a=dtdv=dt2d2v
圆周运动
- ω = d θ d t \omega=\frac{d\theta}{dt} ω=dtdθ
- 角速度 α = d ω d t = d 2 θ d t 2 \alpha=\frac{d\omega}{dt}=\frac{d^2\theta}{dt^2} α=dtdω=dt2d2θ( r a d / s 2 rad/s^2 rad/s2)
- 切向加速度 a τ = α R = d v d t a_{\tau}=\alpha R=\frac{dv}{dt} aτ=αR=dtdv
- 法向加速度 a n = ω 2 R = v 2 R a_n=\omega^2R=\frac{v^2}{R} an=ω2R=Rv2
- a 总 = a n 2 + a τ 2 a_{总}=\sqrt{a_{n}^2+a_{\tau}^2} a总=an2+aτ2
- ω = ω 0 + α t \omega=\omega_0+{\alpha}t ω=ω0+αt
- θ = θ 0 + ω 0 t + 1 2 α t 2 \theta=\theta_0+\omega_{0}t+\frac{1}{2}\alpha t^2 θ=θ0+ω0t+21αt2
- ω 2 − ω 0 2 = 2 α ( θ − θ 0 ) \omega^2-\omega_{0}^2=2\alpha(\theta-\theta_0) ω2−ω02=2α(θ−θ0)
功能学
基本公式
- 转动惯量 J = m l 2 J=ml^2 J=ml2
- 转动动能 E k = 1 2 J ω 2 E_k=\frac{1}{2}J\omega^2 Ek=21Jω2
- 角动量L
=
∑
m
r
v
/
∑
J
ω
=\sum{mrv}/\sum{J\omega}
=∑mrv/∑Jω
角动量守恒
前提条件:系统所受合力始终指向转动中心
补充:类似于动量守恒,对于1.瞬间发生 或 2.内力远大于外力 的情况也是成立的 - 力矩 M = ∑ F R M=\sum{FR} M=∑FR(一般设顺时针为正方向)
- 转动定律
M
=
J
α
M=J\alpha
M=Jα
转动惯量表格(网上很多资源)
动量守恒 ∑ m 0 v 0 = ∑ m t v t \sum\limits{m_{0}v_{0}}=\sum\limits{m_{t}v_{t}} ∑m0v0=∑mtvt
一些解题方法问题
-
为什么定滑轮两侧绳子拉力不相等?
大学物理里的定滑轮有质量,转动需要力矩 -
定滑轮的转动惯量?
当做圆柱体 1 2 m R 2 \frac{1}{2}mR^2 21mR2 -
![[Pasted image 20240621154044.png]]
把中间那段绳子的拉力设为 T 3 且 a τ = α 1 R 1 = α 2 R 2 T_3且a_\tau=\alpha_{1}R_1=\alpha_{2}R_2 T3且aτ=α1R1=α2R2
电磁学
高斯定理
∮
s
E
⃗
d
s
⃗
=
∑
q
ϵ
0
\oint_s\vec{E}d\vec{s}=\frac{\sum\limits{q}}{\epsilon_0}
∮sEds=ϵ0∑q
若高斯面上的电场强度处处为零,则该面内必定没有净电荷(可以部分为零,就是被高斯面外的电场强度抵消,但不能完全抵消)
净电荷指物体或其一部分所带的未被抵消的电荷)
考试记得写:在球面外作同心的球面为高斯面
静电平衡
条件:导体内部电场强度为0,导体表面附近电场强度沿表面的法线方向
特征:
1. 导体表面是等势面
2. 净电荷只分布在导体表面,导体内部电场强度处处为0
3. 导体表面电场强度
E
=
σ
ϵ
0
E=\frac{\sigma}{\epsilon_0}
E=ϵ0σ
毕奥——萨伐尔定律:
d
B
⃗
=
u
0
4
π
I
d
l
⃗
s
i
n
θ
r
2
d\vec{B}=\frac{u_0}{4\pi}\frac{Id\vec{l}sin\theta}{r^2}
dB=4πu0r2Idlsinθ
圆心处
B
=
u
0
I
2
R
B=\frac{u_{0}I}{2R}
B=2Ru0I
直导线对点的磁感应强度
B
=
u
0
I
4
π
a
(
cos
θ
0
−
cos
θ
)
B=\frac{u_{0}I}{4\pi a}(\cos\theta_{0}-\cos\theta)
B=4πau0I(cosθ0−cosθ)(初-末)(角度为r与Idl的夹角(正向),r的方向为导线指向待求点)
短导线,长为dl,对点的
d
B
=
U
0
I
d
l
sin
θ
4
π
a
2
dB=\frac{U_{0}Idl\sin\theta}{4\pi a^2}
dB=4πa2U0Idlsinθ
无限长
B
=
u
0
I
2
π
a
B=\frac{u_{0}I}{2\pi a}
B=2πau0I(不用记)
安培环路定理
- ∮ B d l = u 0 ∑ I i n \oint{B}dl=u_0\sum\limits{I_{in}} ∮Bdl=u0∑Iin
- 最好利用右手定则给l定个方向(随便定也行)
- ∮ B d l 中的 l = \oint{B}dl中的l= ∮Bdl中的l=与闭合曲线同向的部分-与闭合曲线反向的部分
- ∑ I i n = 同向部分 − 反向部分 \sum\limits{I_{in}}=同向部分-反向部分 ∑Iin=同向部分−反向部分(右手定则判定正反)
电容
- C = Q U C=\frac{Q}{U} C=UQ
- C = ϵ 0 ϵ n S d C=\frac{\epsilon_{0}\epsilon_{n}S}{d} C=dϵ0ϵnS
- 串联电容(Q相同) 1 C = 1 C 1 + 1 C 2 \frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2} C1=C11+C21
- 并联电容(U相同) C = C 1 + C 2 C={C_1}+{C_2} C=C1+C2
-
一对极板,含多种电介质
相当于并联(左右夹心)
相当于串联(上下夹心)
-
[[电路分析基础#电容在某一时刻的储能:]]
法拉第电磁感应定律
-
磁通量 ϕ m = ∫ s B ⃗ d S ⃗ \phi_m=\int_{s}\vec{B}d\vec{S} ϕm=∫sBdS tip:当B是变化的时候用( ϕ = B S cos θ \phi=BS\cos\theta ϕ=BScosθ)
类似此题的做题步骤1.建立坐标系 2.根据坐标系去对所设dx积分
-
感生电动势 ϵ = − N d ϕ d t \epsilon=-N\frac{d\phi}{dt} ϵ=−Ndtdϕ
-
动生电动势 ϵ = ∫ L ( v × B ) d l \epsilon=\int_L(v\times B)dl ϵ=∫L(v×B)dl
-
安培力 F = ∫ L d F ⃗ = ∫ L I d l ⃗ × B ⃗ F=\int_{L}d\vec{F}=\int_{L}Id{\vec{l}}\times{\vec{B}} F=∫LdF=∫LIdl×B