常见的小问题
- 电压的+、-号满足电流从高电位流向低电位,就是关联参考方向。
- 对于开路的支路i=0,在此支路上的电阻无升降压,
- 电阻的升降压与假设的电流方向和参考方向有关,例如计算电位差,如果是顺着电流的真实方向找电位,那么电阻就是压降的(但电压源升降,不受电流影响)
- 元件的吸收的功率A,则输出为-A。关联参考方向的 P 吸收 = U I P_{吸收}=UI P吸收=UI
- 节点法中,电流参考方向不用预估电压的大小,而是看列的公式 u A B u_{AB} uAB说明方向是A指向B
- 叠加定理中,受控源和电阻不动
- 线性电路比例性:在线性电路中,当所有激励同时增大或缩小k倍时,响应也相应的增大或缩小 k 倍
- 有控制电流源的的电路,怎么判断控制量的i?
对回路列KVL方程 - 电位的计算:如果支路断开则没有电流,没有分压,也就是各个点位电位与电阻无关。
- 并联的电压源大小一定相等
电路电阻的化简:
- 先画一条回路连接端口两端
- 再根据结点电位是否相同,来判断电阻的串并联
- 最后计算简化电阻
戴维南定理做题步骤:
- 列KVL方程,求开路电压
- 开口一端有受控源:外接电压源
U
s
U_{s}
Us法,其余电源置0,求出流经电压源的电流,等效电阻
R
等效
=
U
s
/
i
R_{等效}=U_{s}/i
R等效=Us/i(无受控源:电源置0,等效电阻)
戴维南定理做题步骤2注意:
1. 对于公共支路不能直接分压算,最好设电流,找电压源做KVL
诺顿定理做题步骤
- 导线连接开路部分,求短路电流 I s c I_{sc} Isc
- 外接电压源 U s U_{s} Us,其余电源置0,求出流经电压源的电流,等效电阻 R 等效 = U s / i R_{等效}=U_{s}/i R等效=Us/i
支路电流法
- 列(节点数-1)个KCL方程
- 在对{支路数-(节点数-1)}回路列KVL方程
- 解方程
结点电压法
-
标出0点位点,给其余结点标上1、2、3
-
化简含源支路,电源置0,得出每个结点的自电导与互电导(一定记得加负号)
-
计算 I s n I_{sn} Isn的方法:找出结点的: 电源 i s n = 电流源 + 电压源 所在支路的电阻 电源i_{sn}=电流源+\frac{电压源}{所在支路的电阻} 电源isn=电流源+所在支路的电阻电压源(流入为正)
-
代入公式
tips:互电导的计算一定在同一支路上
已知电容i(t),求U(t)
u
(
t
)
=
u
(
t
0
)
+
∫
t
0
t
1
C
i
(
t
)
d
t
u(t)=u(t_{0})+\int_{t_0}^t\frac{1}{C}i(t)dt
u(t)=u(t0)+∫t0tC1i(t)dt
反之,则代入公式:
i
=
C
d
u
d
t
i=C\frac{du}{dt}
i=Cdtdu
电容在某一时刻的储能:
W c ( t ) = 1 2 C u 2 ( t ) W_{c}(t)=\frac{1}{2}Cu^2(t) Wc(t)=21Cu2(t)(电容在任一时刻的储能只取决于该时刻的电容电压值,而与该时刻电容电流值无关)
RC电路相应
- 画出变化前后的电路
- 将电容看作断路,求出初、末状态两端的电压
- 找突变时间 t 0 t_{0} t0
- 找时间常数τ=RC:求R:将变化后的电路,所有电源置0,去掉电容
- 套公式
- U c = U c ( ∞ ) + [ U c ( 0 + ) − U c ( ∞ ) ] e − t − t 0 τ U_{c}=U_{c}(\infty)+[U_{c}(0_{+})-U_{c}(\infty)]e^-\frac{t-t_{0}}{τ} Uc=Uc(∞)+[Uc(0+)−Uc(∞)]e−τt−t0(τ=RC)
- i = C d u d t i=C\frac{du}{dt} i=Cdtdu
RL电路相应
- 画出变化前后的电路
- 将电感看作短路,求出初、末状态两端的电流
- 找突变时间 t 0 t_{0} t0
- 找时间常数 τ = L R τ=\frac{L}{R} τ=RL:求R:将变化后的电路,所有电源置0,去掉电感
- 套公式
- L c = L c ( ∞ ) + [ L c ( 0 + ) − L c ( ∞ ) ] e − t − t 0 τ L_{c}=L_{c}(\infty)+[L_{c}(0_{+})-L_{c}(\infty)]e^-\frac{t-t_{0}}{τ} Lc=Lc(∞)+[Lc(0+)−Lc(∞)]e−τt−t0( τ = L R , t 0 为变化时刻 τ=\frac{L}{R},t_{0}为变化时刻 τ=RL,t0为变化时刻)
-
u
=
L
d
I
d
t
u=L\frac{dI}{dt}
u=LdtdI
全响应的计算=零输入响应+零状态响应(注意正负号,最好标出两状态的初末电流/电压,例如 1 A → 0 A 1A\rightarrow0A 1A→0A)
电感滞后电流,电容滞后电压。这两个的输入变化时,求其余电流/电压要注意
RLC电路
电容、电感的串并联
电容串联
电容并联
电感反之
元件的VCR
过阻尼
→
Δ
>
0
/
/
\rightarrow\Delta>0//
→Δ>0//
临界阻尼
→
Δ
=
0
\rightarrow\Delta=0
→Δ=0
欠阻尼
→
Δ
<
0
\rightarrow\Delta<0
→Δ<0
从过阻尼、临界阻尼到欠阻尼变化,直到R=0时为无阻尼状态。电路响应的形式分别对应非震荡、衰减振荡和等幅振荡(R=0)
相量与复数
阻抗的表达式是复数(Complex):
𝑍=𝑅+𝑗𝑋
复数的实部代表耗散电能的电阻(Resistance),虚部代表储存电能的电抗(Reactance)。
为什么用复数?
电阻代表对信号幅值的衰减,电抗代表对信号相位的改变。(j>0电感,j<0电容)