原码

原码

如果机器字长为n(即采用n个二进制位表示数据),则原码表示方法如下:

  • 整数原码

当X是纯整数时
[X]原= X, 0 ≤ X ≤2的n-1次 -1
[X]原= 2的n-1次 + (X的绝对值) , -(2的n-1次 -1) ≤ X ≤ 0

  • 小数原码

当X是小数时
[X]原= X, 0 ≤ X < 1
[X]原=2的0次+(X的绝对值) , -1 < X ≤ 0

这些方法是书上给的方法,但是相对而言比较繁琐,小编给大家化简一下,其实不难。

  • 对于正整数,其原码等于它本身,而负整数原码则是其对应的整数原码(负整数的绝对值),加上一位或者两位符号位即可。
  • 对于小数而言,其原码则是将它乘2取整再取值。

化整方法如下:
计算0.1875的原码
0.18752=0.3750 ,取整数位0
0.3750
2=0.7500 ,取整数位0
0.75002=1.5000 ,取整数位1
0.5000
2=1.0000 ,取整数位1
然后从上往下 即0.1875的原码是1100,再加上一位符号位1,则1 1100,因为机器字长为八位,所以凑齐八位 1 1100 000

对此需要特别注意的是,在补齐位置的时候,要注意整数是往符号位之后,数值之前补,而小数则是往数值之后补。

大家可以使用以上方法计算下列数值得原码
[+1]原=0 0000001 [-1]原=1 0000001
[+127]原=0 1111111 [-127]原=1 1111111
[+45]原=0 0101101 [-45]原=1 0101101
[+0.5]原=0 .1000000 [-0.5]原=1 .1000000
小数原码不写小数点,在此是为了特别注明小数点的位置,以区分符号位和数值位。

数值0的原码表示有两种形式:
[+0]原=0 0000000 、[-0]原=1 0000000

如果有什么问题,欢迎大家指正!!!

<think>嗯,用户想了解原码和补码的概念以及转换方法,还有计算机表示法。首先,我需要回忆一下原码、反码和补码的基本定义。原码应该是最直接的二进制表示,符号位在最高位,0正1负。比如,+5是00000101,-5是10000101。对吗? 接下来是反码,正数的反码和原码相同,负数的反码则是符号位不变,其他位取反。比如-5的原码是10000101,反码就是11111010。然后补码的话,正数补码和原码一样,负数的补码是反码加1。所以-5的补码应该是11111011。这里可能需要确认一下步骤是否正确,用户提供的引用中也提到补码等于反码加1,特别是负数的部分。 然后转换方法,原码转补码。如果是负数的话,先取反码再加1。那补码转原码的话,是不是同样的操作?比如补码的补码等于原码,引用1里也提到了这一点。例如,补码11111100再取反加1,就会得到原码10000100,也就是-4。这个例子对吗?可能需要检查一下步骤是否正确。 还有用户可能想知道为什么计算机使用补码。根据引用3,补码可以让符号位参与运算,简化运算规则,特别是减法转加法,这样硬件设计更简单。这点很重要,需要解释清楚补码的优势。 另外,用户提供的引用中提到,虽然补码在底层使用,但高级语言里还是用原码,这可能是因为程序员不需要直接处理补码,编译器会自动处理转换。这部分可能需要提到。 应用场景的话,补码用于计算机的算术运算,比如加减法,避免处理符号的复杂性。原码可能在显示或者输入输出时使用,但运算时用补码。需要明确区分两者的使用场景。 可能用户的问题还包括如何手动转换,或者具体的例子,比如给定的数值如何转换。例如,用户给的例子-4的原码是10000100,反码是11111011,补码是11111100。需要确认这些步骤是否正确,以及转换过程中的细节,比如符号位不变,其他位取反加1。 还需要注意位数的限制,比如8位二进制数,最高位是符号位,所以范围是-128到127,补码的情况下。原码和反码的范围可能不同,比如原码的8位范围是-127到+127,而补码可以表示-128,这点需要说明。 可能用户还会混淆原码和补码之间的转换步骤,比如负数补码转原码是否需要再次取反加1,还是直接保留符号位取反加1。根据引用1,补码的补码等于原码,所以转换方法是相同的,不管原数是什么,补码转原码都是取反加1,符号位不变? 总结下来,我需要分步骤解释原码、反码、补码的定义,转换方法,以及计算机为什么使用补码。同时,结合用户提供的引用内容,确保引用正确,例如补码的运算优势,转换步骤的例子是否正确。可能还需要指出常见误区,比如补码的范围比原码大,或者转换时的注意事项。</think>### 原码、补码与计算机表示法 #### 1. 原码 (Sign-Magnitude) - **定义**:原码是二进制数的直接表示形式,最高位为符号位(0表示正,1表示负),其余位为数值位。 - 例如:十进制数 $-4$ 的8位原码为 $1000\ 0100$[^1]。 - **特点**: - 直观,但加减运算需处理符号位,硬件实现复杂。 - 存在“+0”和“-0”两种零的表示(如 $0000\ 0000$ 和 $1000\ 0000$)。 --- #### 2. 补码 (Two’s Complement) - **定义**:补码是计算机中表示有符号整数的标准方式,正数的补码与原码相同;负数的补码为其反码加1[^2]。 - **反码**:符号位不变,数值位按位取反。 - 例如:十进制数 $-4$ 的补码转换过程: 原码 $1000\ 0100$ → 反码 $1111\ 1011$ → 补码 $1111\ 1100$[^1]。 - **特点**: - 符号位参与运算,减法可转换为加法,简化硬件设计[^3]。 - 无“-0”,补码范围比原码多一个负数(如8位补码范围为 $-128$ 至 $127$)。 --- #### 3. 原码与补码的转换 - **原码 → 补码**: 1. **正数**:补码 = 原码。 2. **负数**: - 取反码(符号位不变,数值位取反)。 - 反码 + 1。 - **补码 → 原码**: - 方法与“原码转补码”相同:对补码再次取反码后加1。 - 例如:补码 $1111\ 1100$ → 反码 $1111\ 1011$ → 原码 $1000\ 0100$。 --- #### 4. 计算机为何使用补码? 1. **统一加减法**:减法可转换为加法运算(如 $A - B = A + (-B)$),无需额外电路。 2. **消除符号位冲突**:符号位直接参与运算,无需单独处理。 3. **扩展性**:补码能表示更广泛的数值范围(如8位补码可表示 $-128$)。 --- #### 示例:-7的8位补码计算 1. 原码:$1000\ 0111$ 2. 反码:$1111\ 1000$ 3. 补码:$1111\ 1001$ ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值