小数的二进制表示
将小数部分乘以2,取出结果整数部分作为二进制表示的第1位(从左向右);再将结果的小数部分乘以2,将结果整数部分作为二进制表示的第2位;以此类推,直到小数部分为0。
特殊情况: 小数部分出现循环,则用有限的二进制位无法完全表示一个小数,这也是在编程语言中表示小数会出现误差的原因。
例: 将十进制 0.7 转化为二进制,将结果保留10bit
bit0: 0.7 x 2 = 1.4 —— 1
bit1: 0.4 x 2 = 0.8 —— 0
bit2: 0.8 x 2 = 1.6 —— 1
bit3: 0.6 x 2 = 1.2 —— 1
bit4: 0.2x 2 = 0.4 —— 0
bit5: 0.4 x 2 = 0.8 —— 0
bit6: 0.8 x 2 = 1.6 —— 1
bit7: 0.6 x 2 = 1.2 —— 1
bit8: 0.2x 2 = 0.4 —— 0
bit9: 0.4 x 2 = 0.8 —— 0
故小数表示为:0.1011_0011_00
例: 将 0.1011_0011_00 转化为 十进制小数
- dec=∑i=1nbit[i]×2−i , i: 从小数点右侧开始算起;dec =\sum^{n}_ {i=1}bit[i] \times 2^{-i} \text{ , i: 从小数点右侧开始算起;}dec=∑i=1nbit[i]×2−i , i: 从小数点右侧开始算起;
dec=1×2−1+0×2−2+1×2−3+1×2−4+0×2−5+0×2−6+1×2−7+1×2−8+0×2−9+0×2−10dec = 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} + 0 \times 2^{-5} + 0 \times 2^{-6} + 1 \times 2^{-7} + 1 \times 2^{-8} + 0 \times 2^{-9} + 0 \times 2^{-10}dec=1×2−1+0×2−2+1×2−3+1×2−4+0×2−5+0×2−6+1×2−7+1×2−8+0×2−9+0×2−10
=1×121+0×122+1×123+1×124+0×125+0×126+1×127+1×128+0×129+0×1210= 1 \times \frac{1}{2^{1}} + 0 \times \frac{1}{2^{2}} + 1 \times \frac{1}{2^{3}} + 1 \times \frac{1}{2^{4}} + 0 \times \frac{1}{2^{5}} + 0 \times \frac{1}{2^{6}} + 1 \times \frac{1}{2^{7}} + 1 \times \frac{1}{2^{8}} + 0 \times \frac{1}{2^{9}} + 0 \times \frac{1}{2^{10}}=1×211+0×221+1×231+1×241+0×251+0×261+1×271+1×281+0×291+0×2101
=0.5+0+0.125+0.0625+0+0+0.0078125+0.00390625+0+0= 0.5 + 0 + 0.125 + 0.0625 + 0 + 0 + 0.0078125 + 0.00390625 + 0 + 0=0.5+0+0.125+0.0625+0+0+0.0078125+0.00390625+0+0 =0.69921875= 0.69921875=0.69921875
文章解释了如何将小数转换为二进制,通过不断乘以2并取整数部分来表示,遇到循环时会导致精度损失。举例说明了0.7和0.1011_0011_00的转换过程,并指出这种转换可能导致的精度问题。
1006

被折叠的 条评论
为什么被折叠?



