---------------题目---------------
7625:三角形最佳路径问题
-
总时间限制:
- 1000ms 内存限制:
- 65536kB
-
描述
-
如下所示的由正整数数字构成的三角形:
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
从三角形的顶部到底部有很多条不同的路径。对于每条路径,把路径上面的数加起来可以得到一个和,和最大的路径称为最佳路径。你的任务就是求出最佳路径上的数字之和。
注意:路径上的每一步只能从一个数走到下一层上和它最近的下边(正下方)的数或者右边(右下方)的数。
输入
-
第一行为三角形高度100>=h>=1,同时也是最底层边的数字的数目。
从第二行开始,每行为三角形相应行的数字,中间用空格分隔。
输出
- 最佳路径的长度数值。 样例输入
-
5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 或 1 8
样例输出
-
30 或 8
-
---------------分析---------------
-
(啊好麻烦啊不写了)
-
---------------代码实现---------------
-
#include<iostream> #include<algorithm> using namespace std; int i,j; const int MAXN=5051; int A[MAXN][MAXN],F[MAXN][MAXN],N; int main() { cin>>N; for(i=1;i<=N;i++) for(j=1;j<=i;j++) cin>>A[i][j]; F[1][1]=A[1][1]; for(i=2;i<=N;i++) for(j=1;j<=i;j++) F[i][j]=max(F[i-1][j-1],F[i-1][j])+A[i][j]; int ans=0; for(i=1;i<=N;i++) ans=max(ans,F[N][i]); cout<<ans<<endl; return 0; }