DP学习 经典例题 三角形最佳路径问题(NOI7625)

探讨NOI7625题目的解决策略,使用动态规划(DP)求解三角形中从顶部到底部的最短路径问题。
摘要由CSDN通过智能技术生成

---------------题目---------------

7625:三角形最佳路径问题

总时间限制: 
1000ms 
内存限制: 
65536kB
描述

如下所示的由正整数数字构成的三角形: 

3 8 
8 1 0 
2 7 4 4 
4 5 2 6 5 

从三角形的顶部到底部有很多条不同的路径。对于每条路径,把路径上面的数加起来可以得到一个和,和最大的路径称为最佳路径。你的任务就是求出最佳路径上的数字之和。 
注意:路径上的每一步只能从一个数走到下一层上和它最近的下边(正下方)的数或者右边(右下方)的数。

输入
第一行为三角形高度100>=h>=1,同时也是最底层边的数字的数目。
从第二行开始,每行为三角形相应行的数字,中间用空格分隔。
输出
最佳路径的长度数值。
样例输入
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
或
1
8
样例输出
30
或
8
---------------分析---------------
(啊好麻烦啊不写了)
---------------代码实现---------------
#include<iostream>
#include<algorithm>
using namespace std;
int i,j;
const int MAXN=5051;
int A[MAXN][MAXN],F[MAXN][MAXN],N;
int main()
{
	cin>>N;
	for(i=1;i<=N;i++)
		for(j=1;j<=i;j++)
			cin>>A[i][j];
	F[1][1]=A[1][1];
	for(i=2;i<=N;i++)
		for(j=1;j<=i;j++)
			F[i][j]=max(F[i-1][j-1],F[i-1][j])+A[i][j];
	int ans=0;
	for(i=1;i<=N;i++) ans=max(ans,F[N][i]);
	cout<<ans<<endl;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值