总时间限制: 1000ms
内存限制: 65536kB
描述
如下所示的由正整数数字构成的三角形:
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
从三角形的顶部到底部有很多条不同的路径。对于每条路径,把路径上面的数加起来可以得到一个和,和最大的路径称为最佳路径。你的任务就是求出最佳路径上的数字之和。
注意:路径上的每一步只能从一个数走到下一层上和它最近的下边(正下方)的数或者右边(右下方)的数。
输入
第一行为三角形高度100>=h>=1,同时也是最底层边的数字的数目。
从第二行开始,每行为三角形相应行的数字,中间用空格分隔。
输出
最佳路径的长度数值。
样例输入
5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
样例输出
30
解题思路
定义a[i][j]为(i,j)位置的数,dp[i][j]为从(1,1)到(i,j)最大的数字和。
若(i,j)的前一个位置是(i-1,j),那么从(1,1)到(i,j)的数字最大和,为从(1,1)到(i-1,j)的数字最大和,加上(i,j)位置的数字,即dp[i][j] = dp[i-1][j] + a[i][j]
若(i,j)的前一个位置是(i-1,j-1),那么从(1,1)到(i,j)的数字最大和,为从(1,1)到(i-1,j-1)的数字最大和,加上(i,j)位置的数字,即dp[i][j] = dp[i-1][j-1] + a[i][j]
两种情况取最大值
#include<bits/stdc++.h>
using namespace std;
#define N 105
int dp[N][N], a[N][N], h, mx;
int main()
{
cin >> h;
for(int i = 1; i <= h; ++i)
for(int j = 1; j <= i; ++j)
cin >> a[i][j];
for(int i = 1; i <= h; ++i)
for(int j = 1; j <= i; ++j)
dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]) + a[i][j];
for(int j = 1; j <= h; ++j)
mx = max(mx, dp[h][j]);
cout << mx;
return 0;
}