【题目链接】
ybt 1288:三角形最佳路径问题
OpenJudge NOI 2.6 7625:三角形最佳路径问题
【题目考点】
1. 动态规划:坐标型动规
【解题思路】
记第(i,j)位置的数字为a[i][j]
。
解法1:正推法
1. 状态定义
阶段:到达位置
决策:某一步走的方向(向下走还是向右下走)
策略:从(1,1)走到某位置(i,j)的路径
策略集合:从(1,1)到(i,j)的所有路径
条件:数字加和最大
统计量:数字加和
状态定义:dp[i][j]
:从(1,1)到(i,j)的所有路径中,数字加和最大的路径的数字加和。
2. 状态转移方程
集合:从(1,1)到(i,j)的所有路径
分割集合:根据到(i,j)的前一个位置分割集合
已知从(i,j)位置下一步只能到正下方(i+1,j)位置或右下方(i+1,j+1)位置。那么(i,j)的前一个位置只能是(i,j)的正上方(i-1,j)或左上方(i-1,j-1)。
- 如果到(i,j)的前一个位置是(i-1,j),那么从(1,1)到(i,j)的路径上数字的最大加和,为从(1,1)到(i-1,j)的路径上数字的最大加和,加上(i,j)位置的数字,即
dp[i][j] = dp[i-1][j] + a[i][j]
- 如果到(i,j)的前一个位置是(i-1,j-1),那么从(1,1)到(i,j)的路径上数字的最大加和,为从(1,1)到(i-1,j-1)的路径上数字的最大加和,加上(i,j)位置的数字,即
dp[i][j] = dp[i-1][j-1] + a[i][j]
- 以上两种情况取最大值
通过动规求出dp数组后,即得到从(1,1)到最后一行每个位置的数字加和最大的路径的数字加和。遍历dp数组的第h行(最后一行),求出其中的最大值,即为从(1,1)到最后一行的路径中,数字加和最大的路径的数字加和。
解法2:逆推法
从顶部到底部的数字加和最大的路径,与从底部到顶部的数字加和最大的路径,路径上的数字加和应该是一样的。
因此可以考虑从最后一行走到第一行的路径,从下向上走,每次可以向上或向左上走。
1. 状态定义
阶段:到达的位置
决策:某一步走的方向(向上走或向左上走)
策略:从最后一行到某位置(i,j)路径
策略集合:从最后一行到(i, j)的所有路径
条件:数字加和最大
统计量:数字加和
状态定义:dp[i][j]
:从最后一行到(i,j)的所有路径中,数字加和最大的路径的数字加和。
2. 状态转移方程
集合:从最后一行到(i,j)的所有路径
分割集合:根据到(i,j)的前一个位置分割集合
到(i,j)位置的前一个位置只能是正下方(i+1,j)位置或右下方(i+1,j+1)位置。
- 如果到(i,j)的前一个位置是(i+1,j),那么从最后一行到(i,j)的路径上数字的最大加和,为从最后一行到(i+1,j)的路径上数字的最大加和,加上(i,j)位置的数字,即
dp[i][j] = dp[i+1][j] + a[i][j]
- 如果到(i,j)的前一个位置是(i+1,j+1),那么从最后一行到(i,j)的路径上数字的最大加和,为从(1,1)到(i+1,j+1)的路径上数字的最大加和,加上(i,j)位置的数字,即
dp[i][j] = dp[i+1][j+1] + a[i][j]
- 以上两种情况取最大值
最后直接输出dp[1][1]
,即为从底部到顶部的数字加和最大的路径的数字加和。
【题解代码】
解法1:正推法
#include<bits/stdc++.h>
using namespace std;
#define N 105
int dp[N][N], a[N][N], h, mx;//dp[i][j]:从(1,1)到(i,j)的所有路径中,数字加和最大的路径的数字加和。
int main()
{
cin >> h;
for(int i = 1; i <= h; ++i)
for(int j = 1; j <= i; ++j)
cin >> a[i][j];
for(int i = 1; i <= h; ++i)
for(int j = 1; j <= i; ++j)
dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]) + a[i][j];
for(int j = 1; j <= h; ++j)//求从(1,1)到第h行某位置路径上数字加和的最大值
mx = max(mx, dp[h][j]);
cout << mx;
return 0;
}
解法2:逆推法
#include<bits/stdc++.h>
using namespace std;
#define N 105
int dp[N][N], a[N][N], h, mx;//dp[i][j]:从最后一行到(i,j)的所有路径中,数字加和最大的路径的数字加和。
int main()
{
cin >> h;
for(int i = 1; i <= h; ++i)
for(int j = 1; j <= i; ++j)
cin >> a[i][j];
for(int i = h; i >= 1; --i)
for(int j = 1; j <= i; ++j)
dp[i][j] = max(dp[i+1][j], dp[i+1][j+1]) + a[i][j];
cout << dp[1][1];
return 0;
}