Java-Stream流

Stream API(java.util.stream.Stream)

Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。
使用Stream API 对集合数据进行操作,就类似于使用 SQL 执行的数据库查询。也可以使用 Stream API 来并行执行操作。
简而言之,Stream API 提供了一种高效且易于使用的处理数据的方式。

流(Stream) 到底是什么呢?

是数据渠道,用于操作数据源(集合、数组等)所生成的元素序列。
集合讲的是数据,流讲的是计算!
*注意:
①Stream 自己不会存储元素。
②Stream 不会改变源对象。相反,他们会返回一个持有结果的新Stream。
③Stream 操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。

Stream 的操作三个步骤

 1.创建 Stream
一个数据源(如:集合、数组),获取一个流
 2.中间操作
一个中间操作链,对数据源的数据进行处理
 3.终止操作(终端操作)
一个终止操作,执行中间操作链,并产生结果

创建Stream的方式

(1).Java8 中的 Collection 接口被扩展,提供了
两个获取流的方法:
 default Stream stream() : 返回一个顺序流
 default Stream parallelStream() : 返回一个并行流
(2).Java8 中的 Arrays 的静态方法 stream() 可以获取数组流:
 static Stream stream(T[] array): 返回一个流
重载形式,能够处理对应基本类型的数组:
public static IntStream stream(int[] array)
 public static LongStream stream(long[] array)
 public static DoubleStream stream(double[] array)
(3).由值创建流,可以使用静态方法 Stream.of(), 通过显示值创建一个流。它可以接收任意数量的参数。
 public static Stream of(T… values) : 返回一个流
(4).由函数创建流:创建无限流可以使用静态方法 Stream.iterate()和Stream.generate(), 创建无限流。
 public static Stream iterate(final T seed, finalUnaryOperator f) 迭代
 public static Stream generate(Supplier s) 生成

Stream 的中间操作

多个中间操作可以连接起来形成一个流水线,除非流水线上触发终止操作,否则中间操作不会执行任何的处理!
而在终止操作时一次性全部处理,称为“惰性求值”。
(1).筛选与切片
filter(Predicate p) 过滤 接收 Lambda , 从流中排除某些元素。
distinct() 去重,通过流所生成元素的 hashCode() 和 equals() 去除重复元素
limit(long maxSize) 截断流,使其元素不超过给定数量。
skip(long n) 跳过元素,返回一个扔掉了前 n 个元素的流。若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补
(2).映射
map(Function f) 接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
flatMap(Function f) 接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流.
mapToDouble(ToDoubleFunction f) 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 DoubleStream。
mapToInt(ToIntFunction f) 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 IntStream。
mapToLong(ToLongFunction f) 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 LongStream。
(3).排序
sorted() 产生一个新流,其中按自然顺序排序 元素实现Compareble接口
sorted(Comparator comp) 产生一个新流,其中按比较器顺序排序 传入一个比较

Stream 的终止操作

 终端操作会从流的流水线生成结果。其结果可以是任何不是流的值,例如:List、Integer,甚至是 void 。
 * (1).查找与匹配
	allMatch(Predicate p)	检查是否匹配所有元素  比如判断 所有员工的年龄都是17岁 如果有一个不是,就返回false
	anyMatch(Predicate p)	检查是否至少匹配一个元素  比如判断是否有姓王的员工,如果至少有一个就返回true
	noneMatch(Predicate p)	检查是否没有匹配所有元素   比如判断所有员工的工资都是否都是高于3000 如果有一个人低于3000 就返回false
	findFirst()		返回第一个元素  比如获取工资最高的人  或者 获取工资最高的值是
	findAny()		返回当前流中的任意元素   比如随便获取一个姓王的员工
	count()	返回流中元素总数  
	max(Comparator c)	返回流中最大值  比如:获取最大年龄值
	min(Comparator c)	返回流中最小值  比如:获取最小年龄的值
	forEach(Consumer c)	内部迭代(使用 Collection 接口需要用户去做迭代,称为外部迭代。相反,Stream API 使用内部迭代——它帮你把迭代做了)
* (2).归约
	reduce(T iden, BinaryOperator b)  参1 是起始值, 参2 二元运算	可以将流中元素反复结合起来,得到一个值。返回 T  比如: 求集合中元素的累加总和 
	reduce(BinaryOperator b) 这个方法没有起始值	可以将流中元素反复结合起来,得到一个值。返回 Optional<T>  , 比如你可以算所有员工工资的总和
	备注:map 和 reduce 的连接通常称为 map-reduce 模式,因 Google 用它来进行网络搜索而出名。
* (3).收集
	collect(Collector c)	将流转换为其他形式。接收一个 Collector接口的实现,用于给Stream中元素做汇总的方法
	Collector 接口中方法的实现决定了如何对流执行收集操作(如收集到 List、Set、Map)。
	但是 Collectors 实用类提供了很多静态方法,可以方便地创建常见收集器实例,具体方法与实例如下
* (4).Collectors 中的方法
	List<T> toList()	把流中元素收集到List   比如把所有员工的名字通过map()方法提取出来之后,在放到List集合中去
	例子:List<Employee> emps= list.stream().map(提取名字).collect(Collectors.toList());
	Set<T>  toSet()	    把流中元素收集到Set  比如把所有员工的名字通过map()方法提取出来之后,在放到Set集合中去
	例子:Set<Employee> emps= list.stream().collect(Collectors.toSet());
	Collection<T> toCollection()	把流中元素收集到创建的集合 比如把所有员工的名字通过map()方法提取出来之后,在放到自己指定的集合中去
	例子:Collection<Employee>emps=list.stream().map(提取名字).collect(Collectors.toCollection(ArrayList::new));
	Long counting()		计算流中元素的个数
	例子:long count = list.stream().collect(Collectors.counting());
	Integer	summingInt()	对流中元素的整数属性求和
	例子:inttotal=list.stream().collect(Collectors.summingInt(Employee::getSalary));
	Double averagingInt()	计算流中元素Integer属性的平均值
	例子:doubleavg= list.stream().collect(Collectors.averagingInt(Employee::getSalary));
	IntSummaryStatistics summarizingInt()	收集流中Integer属性的统计值。
	例子:DoubleSummaryStatistics dss=list.stream().collect(Collectors.summarizingDouble(Employee::getSalary));     
	从DoubleSummaryStatistics 中可以获取最大值,平均值等
    double average = dss.getAverage();
    long count = dss.getCount();
    double max = dss.getMax();
	String joining() 连接流中每个字符串  比如把所有人的名字提取出来,在通过"-"横杠拼接起来
	例子:String str=list.stream().map(Employee::getName).collect(Collectors.joining("-"));
	Optional<T> maxBy() 根据比较器选择最大值  比如求最大工资
	例子:Optional<Emp>max=list.stream().collect(Collectors.maxBy(comparingInt(Employee::getSalary)));
	Optional<T> minBy() 根据比较器选择最小值  比如求最小工资
	例子:Optional<Emp> min list.stream().collect(Collectors.minBy(comparingInt(Employee::getSalary)));
	归约产生的类型 reducing() 从一个作为累加器的初始值开始,利用BinaryOperator与流中元素逐个结合,从而归约成单个值
	例子:inttotal=list.stream().collect(Collectors.reducing(0, Employee::getSalar, Integer::sum));
	转换函数返回的类型 collectingAndThen()		包裹另一个收集器,对其结果转换函数
	例子:inthow= list.stream().collect(Collectors.collectingAndThen(Collectors.toList(), List::size));
	Map<K, List<T>> groupingBy() 根据某属性值对流分组,属性为K,结果为V  比如按照 状态分组
	例子:Map<Emp.Status, List<Emp>> map= list.stream().collect(Collectors.groupingBy(Employee::getStatus));
	Map<Boolean, List<T>> partitioningBy() 根据true或false进行分区 比如 工资大于等于6000的一个区,小于6000的一个区
	例子:Map<Boolean,List<Emp>>vd=list.stream().collect(Collectors.partitioningBy(Employee::getSalary));

并行流与串行流

并行流就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。
Java 8 中将并行进行了优化,我们可以很容易的对数据进行并行操作。
Stream API 可以声明性地通过 parallel() 与sequential() 在并行流与顺序流之间进行切换。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值