Cleaning Data in Python(datacamp)

在数据分析中,数据清洗是至关重要的步骤。本文介绍了如何在Python中进行数据预处理,包括频数计算、数据可视化、数据整理、组合数据、处理数据类型和格式,以及运用正则表达式进行复杂匹配。此外,还提到了使用assert进行数据质量检查的方法。
摘要由CSDN通过智能技术生成

拿到数据,先要了解数据:

file.head()
file.tail()
file.shape
file.columns
file.info()

频数计算:

file.col_name.value_counts(drapna=False)
#or
file[col_name].value_counts(drapna=False)

#计算特征数
file.describe()

数据可视化:

#histogram
file.col_name.plot('hist')
plt.show()

# box plot
file.boxplot(column='', by='')
plt.show()

#example
df['Existing Zoning Sqft'].plot(kind='hist', rot=70<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值