Flink 源码解析:ExecutionGraph 大数据处理引擎

178 篇文章 ¥59.90 ¥99.00
Apache Flink的ExecutionGraph将用户作业转化为可执行数据流图,包含JobInformation、ExecutionJobVertex、ExecutionVertex、IntermediateResult和ExecutionEdge等组件。文章详细介绍了ExecutionGraph的构建过程,包括解析验证、任务划分、数据交换边创建和任务调度,以及提供源码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Flink 源码解析:ExecutionGraph 大数据处理引擎

在大数据领域中,Apache Flink 是一个强大的流处理和批处理引擎。其核心组件 ExecutionGraph 负责将用户提交的作业转化为可执行的数据流图。本文将深入探讨 ExecutionGraph 的实现细节,包括相关源代码示例。

ExecutionGraph 的作用是将用户定义的作业转换为执行图,其中包含了作业的拓扑结构、并行任务的划分、任务之间的数据交换等信息。ExecutionGraph 是 Flink 在运行时执行作业的核心数据结构之一。

让我们从 ExecutionGraph 的基本结构开始。在 Flink 中,每个作业都由一个 JobGraph 对象表示。当用户提交作业时,Flink 首先将 JobGraph 转换为 ExecutionGraph,然后执行该图。

ExecutionGraph 包含了以下关键组件:

  1. JobInformation:存储与作业相关的元数据,如作业 ID、作业名称、作业提交时间等。

  2. ExecutionJobVertex:表示作业图中的一个顶点,对应一个并行任务。ExecutionJobVertex 包含了与任务相关的信息,如任务名称、并行度、输入边、输出边等。

  3. ExecutionVertex:表示 ExecutionJobVertex 在特定并行实例上的执行。ExecutionVertex 包含了任务

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值