Flink 源码解析:ExecutionGraph 大数据处理引擎
在大数据领域中,Apache Flink 是一个强大的流处理和批处理引擎。其核心组件 ExecutionGraph 负责将用户提交的作业转化为可执行的数据流图。本文将深入探讨 ExecutionGraph 的实现细节,包括相关源代码示例。
ExecutionGraph 的作用是将用户定义的作业转换为执行图,其中包含了作业的拓扑结构、并行任务的划分、任务之间的数据交换等信息。ExecutionGraph 是 Flink 在运行时执行作业的核心数据结构之一。
让我们从 ExecutionGraph 的基本结构开始。在 Flink 中,每个作业都由一个 JobGraph 对象表示。当用户提交作业时,Flink 首先将 JobGraph 转换为 ExecutionGraph,然后执行该图。
ExecutionGraph 包含了以下关键组件:
-
JobInformation:存储与作业相关的元数据,如作业 ID、作业名称、作业提交时间等。
-
ExecutionJobVertex:表示作业图中的一个顶点,对应一个并行任务。ExecutionJobVertex 包含了与任务相关的信息,如任务名称、并行度、输入边、输出边等。
-
ExecutionVertex:表示 ExecutionJobVertex 在特定并行实例上的执行。ExecutionVertex 包含了任务