基于改进的Criminisi算法实现图像修复附Matlab代码

181 篇文章 47 订阅

已下架不支持订阅

本文介绍了如何基于改进的Criminisi算法实现图像修复,涉及图像上下文利用、迭代修复过程、优先级计算及最佳像素选择。还提供了相应的Matlab代码示例,但实际应用可能需要针对特定情况进行调整和优化。
摘要由CSDN通过智能技术生成

基于改进的Criminisi算法实现图像修复附Matlab代码

图像修复是计算机视觉中的一个重要问题,旨在从损坏或缺失的图像区域中恢复丢失的信息。Criminisi算法是一种常用的图像修复算法,它通过利用图像的上下文信息来填补缺失的区域。本文将介绍基于改进的Criminisi算法的图像修复实现,并提供相应的Matlab代码。

改进的Criminisi算法主要包括以下步骤:

  1. 获得图像和掩膜:首先,我们需要加载待修复的图像,并创建一个与之相同大小的掩膜,其中缺失的区域用0表示。
% 加载图像
image = imread('input.jpg');
% 创建掩膜
mask = 

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值