R语言 LOESS 函数数据平滑实战

91 篇文章 ¥59.90 ¥99.00
本文详细介绍了R语言中的LOESS函数在数据平滑中的应用,通过非参数回归方法平滑数据,强调了LOESS函数的灵活性和适应性,特别是在处理小样本和不均匀采样数据时的优势。文章涵盖了从安装依赖包、生成示例数据、绘制原始数据图,到使用LOESS函数进行平滑处理、选择平滑度参数span以及绘制平滑曲线图的全过程,并强调了选择合适span的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言 LOESS 函数数据平滑实战

数据的平滑处理是在实际应用中常见的任务之一,它可以消除噪声、减少误差,并帮助我们更好地理解数据的趋势和模式。R语言提供了许多用于数据平滑的函数,其中一个强大的工具就是 LOESS(局部加权散点平滑)函数。本文将介绍如何使用 R 语言中的 LOESS 函数进行数据平滑,并提供相应的源代码。

一、什么是 LOESS 函数

LOESS 函数是一种非参数回归方法,它通过在每个数据点周围拟合局部的高次多项式来平滑数据。与其他平滑方法相比,LOESS 函数具有更高的灵活性和适应性,能够更好地捕捉数据中的非线性关系。它在处理小样本和不均匀采样数据时表现出色。

二、安装和加载依赖包

在开始之前,我们需要确保已经安装了 R 语言和相关的依赖包。让我们首先加载所需的依赖包,包括 ggplot2MASS

library(ggplot2)
library(MASS)

三、生成示例数据

为了演示 LOESS 函数的使用,我们需要创建一些示例数据。我们可以使用 R 语言内置的 rnorm() 函数生成服从正态分布的随机数据。下面的代码将生成一个包含 100 个观测值的示例数据集:

set.s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值