Relief特征提取算法实战

本文介绍了Relief特征权重算法及其演变到ReliefF的过程,适用于多类别问题的特征提取。通过实例展示了如何在含有27个特征的CSV数据上应用ReliefF算法,并讨论了算法的运行时间和学习产出,包括技术笔记、博客和视频创作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介及其演变

Relief算法最早由Kira提出,最初局限于两类数据的分类问题。Relief算法是一种特征权重算法(Feature weighting algorithms),根据各个特征和类别的相关性赋予特征不同的权重,权重小于某个阈值的特征将被移除。Relief算法中特征和类别的相关性是基于特征对近距离样本的区分能力。算法从训练集D中随机选择一个样本R,然后从和R同类的样本中寻找最近邻样本H,称为Near Hit,从和R不同类的样本中寻找最近邻样本M,称为NearMiss,然后根据以下规则更新每个特征的权重:如果R和Near Hit在某个特征上的距离小于R和Near Miss上的距离,则说明该特征对区分同类和不同类的最近邻是有益的,则增加该特征的权重;反之,如果R和Near Hit在某个特征的距离大于R和Near Miss上的距离,说明该特征对区分同类和不同类的最近邻起负面作用,则降低该特征的权重。以上过程重复m次,最后得到各特征的平均权重。特征的权重越大,表示该特征的分类能力越强,反之,表示该特征分类能力越弱。Relief算法的运行时间随着样本的抽样次数m和原始特征个数N的增加线性增加,因而运行效率非常高。

由于Relief算法比较简单,但运行效率高,并且结果也比较令人满意,因此得到广泛应用,但是其局限性在于只能处理两类别数据,因此1994年Kononeill对其进行了扩展,得到了ReliefF作算法,可以处理多类别问题。该算法用于处理目标属性为连续值的回归问题。ReliefF算法在处理多类问题时,每次从训练样本集中随机取出一个样本R,然后从和R同类的样本集中找出R的k个近邻样本(near Hits),从每个R的不同类的样本集中均找出k个近邻样本(near Misses),然后更新每个特征的权重。

转载至https://blog.csdn.net/lj6052317/article/details/85077201


自定义样本

我的训练数据是有27个特征,标签为01的训练数据,文件类型是csv文件。大致如下:
在这里插入图片描述

代码

运行代码需要首先导入对应的包,修改文件上传、保存的位置,重新定义index及data = pd.read_csv(f)[],使之与自己csv中index一致。

import pandas as pd
import numpy as np
import numpy.linalg as la
import random
import csv

'''
适用于多分类问题
'''
class Relief:
    def __init__(self, data_df, sample_rate, t, k):
        """
        #
        :param data_df: 数据框(字段为特征,行为样本)
        :param sample_rate: 抽样比例
        :param t: 统计量分量阈值
        :param k: k近邻的个数
        """
        self.__data = data_df
        self.__feature = data_df.columns
        self.__sample_num = int(round(len(data_df) * sample_rate))
        self.__t = t
        self.__k = k

    # 数据处理(将离散型数据处理成连续型数据,比如字符到数值)
    def get_data(self):
        new_data = pd.DataFrame()
        for one in self.__feature[:-1]:
            col = self.__data[one]
            if (str(list(col)[0]).split(".")[0]).isdigit() or str(list(col)[0]).isdigit() or (str(list(col)[0]).split('-')[-1]).split(".")[-1].isdigit():
                new_data[one] = self.__data[one]
                # print('%s 是数值型' % one)
            else:
                # print('%s 是离散型' % one)
                keys = list(set(list(col)))
                values = list(range(len(keys)))
                new = dict(zip(keys, values))
                new_data[one] = self.__data[one].map(new)
        new_data[self.__feature[-1]] = self.__data[self.__feature[-1]]
        return new_data

    # 返回一个样本的k个猜中近邻和其他类的k个猜错近邻
    def get_neighbors(self, row):
        df = self.get_data
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值