模型集成
集成学习(ensemble learning)是机器学习中一类学习算法,值训练多个学习器并将它们组合起来使用的方法。这类算法通常在实践中会取得比单个学习器更好的预测结果。基于数据的集成在训练阶段的数据扩充在测试阶段仍然适用。 诸如图像多尺度, 随机剪裁等。以随机剪裁为例, 对某张测试图片随机剪裁可得到n 张图像,测试阶段只需要用训练好的深度网络模型对n张图分别做预测, 之后将预测的各类置信度平均作为该测试图像最终预测结果即可。数据扩充具体操作方法见前文:https://blog.csdn.net/






