本文关于SVR时间序列的预测,详细步骤如下:
1.数据读取
2.数据集的划分(采用滑动窗口重叠切片)
3.训练数据集掷乱
4.SVR参数设置(网格搜索+交叉验证)
5.SVR模型训练+模型保存
6.SVR模型加载+预测
import xlrd
import matplotlib.pyplot as plt
def read_20180829():
fname = "20180829.xlsx"
bk = xlrd.open_workbook(fname)
# shxrange = range(bk.nsheets)
try:
sh = bk.sheet_by_name("Sheet1")
except:
print("no sheet in %s named Sheet1" % fname)
# 获取行数
nrows = sh.nrows
# 获取列数
ncols = sh.ncols
print("nrows %d, ncols %d" % (nrows, ncols))
# 获取第一行第一列数据
cell_value = sh.cell_value(1, 0)
print(cell_value)
time = []
single1 = []
single2 = []
single3 = []
# 获取各行数据
for i in range(1, nrows):
row_data =