时间序列预测:SVR用于时间序列预测代码+模型保存+模型加载+网格搜索+交叉验证

本文介绍了如何运用支持向量回归(SVR)进行时间序列预测,包括数据读取、滑动窗口切片、数据集打乱、参数调优(网格搜索与交叉验证)、模型训练及保存、模型加载与预测。同时提供了残差图以评估模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文关于SVR时间序列的预测,详细步骤如下:

1.数据读取

2.数据集的划分(采用滑动窗口重叠切片)

3.训练数据集掷乱

4.SVR参数设置(网格搜索+交叉验证)

5.SVR模型训练+模型保存

6.SVR模型加载+预测

import xlrd
import matplotlib.pyplot as plt
def read_20180829():
    fname = "20180829.xlsx"
    bk = xlrd.open_workbook(fname)
    # shxrange = range(bk.nsheets)
    try:
        sh = bk.sheet_by_name("Sheet1")
    except:
        print("no sheet in %s named Sheet1" % fname)
    # 获取行数
    nrows = sh.nrows
    # 获取列数
    ncols = sh.ncols
    print("nrows %d, ncols %d" % (nrows, ncols))
    # 获取第一行第一列数据
    cell_value = sh.cell_value(1, 0)
    print(cell_value)
    time = []
    single1 = []
    single2 = []
    single3 = []
    # 获取各行数据
    for i in range(1, nrows):
        row_data =
根据引用和引用中的内容,滑动窗口时间序列预测代码可以分为以下几个步骤: 1. 定义滑动窗口函数:根据需要设置滑动窗口的大小和步长,可以使用batch实现单变量滑动窗口或window实现单变量滑动窗口。这个函数可以根据需求来选择是否使用重叠采样和偏移预测。 2. 切分数据集:使用滑动窗口函数将时间序列数据集切分成多个样本,每个样本包含滑动窗口大小的数据和对应的标签。可以参考引用中的SVR时间序列预测代码来实现。 3. 模型训练和参数设置:使用切分好的数据集进行模型训练,可以使用网格搜索交叉验证来选择合适的模型参数。可以参考引用中的代码来进行模型参数的设置。 4. 模型保存加载:可以将训练好的模型保存到文件中,方便之后的模型加载预测。可以使用模型保存加载的方法来实现,可以参考引用中的代码。 5. 模型预测:使用训练好的模型对未来的时间序列数据进行预测。可以使用已经加载模型来进行预测,可以参考引用中的代码。 总结起来,滑动窗口时间序列预测代码包括定义滑动窗口函数、切分数据集、模型训练和参数设置、模型保存加载以及模型预测。根据具体的需求和使用的模型,可以适当调整代码的细节。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [tf.keras 12: 单变量多变量滑动窗口处理时间序列预测数据](https://blog.csdn.net/weixin_39653948/article/details/105928752)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [SVR时间序列数据预测(数据+代码)](https://download.csdn.net/download/dian1pei2xiao3/11502007)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值