微流控专题 | 微流体应用说明

1 简介

相比传统的批量生成技术,利用微流控技术进行液滴生成与操控具有显著优势。液滴微流控技术是指在不混溶的两相介质中(如油相中的水滴)操控离散液体体积的一种方法。其主要优势包括以下几点:

优点应用
更精确的小体积液滴控制
增强混合效果
对液滴尺寸和形状等参数的精确控制
支持高通量实验
乳液生成
泡沫或气泡生成
纳米颗粒合成
细胞封装
药物输送
微胶囊生成

2 液滴合成原理

微流控液滴生成系统用于在不混溶的介质中生成单分散水滴或油滴。在被动式液滴生成方法中,关键原理是利用至少两股不混溶的流体,并对其中一相施加剪切力,从而将其分裂为离散液滴。

生成微流控液滴的主要目的有两个。第一个是生成具有非常高单分散性的液滴,与传统的乳液批量生产方法相反,微流控技术能够提供尺寸非常一致的液滴。食品工业和制药行业等材料科学领域从这些新型微流控技术中受益匪浅。

第二个目的是对特定样本进行分隔。通过微流控液滴,可以操控极小且精确的样本体积,同时实现高通量实验,因为每个液滴都可以作为一个独立的微反应器。此外,液滴还能够增强化学混合效果,从而克服单相微流控技术中的一个基本问题。

3 液滴应用示例

单孢子包封

用于药物输送的纳米水凝胶

核-间隙-壳微胶囊

4 液滴生成与操控的两种主要方法

液滴生成的方法多种多样,这里介绍数字微流控中最常用的两种方法。这些方法利用两种不混溶的介质(通常为水和油)以及特定的芯片设计,使其中一股流体被分割成离散液滴。在这两种方法中,需要非常精确的流体控制系统以实现对液滴参数(如尺寸和频率)的精准调控。更详细的实验步骤可参考我们的应用说明。

关键因素

  • 表面润湿性:表面润湿性是防止液滴粘附在芯片壁上的关键参数。对于水包油液滴,表面需具有疏水性;而对于油包水乳液,表面则需具有亲水性。
  • 表面活性剂:使用表面活性剂可以有效防止液滴的合并,从而保持液滴的稳定性。

 

 流动聚焦法

在流动聚焦法中,中间相被两股连续相流体挤压

T 型连接方法

在这种方法中,两种流体通常通过压力控制器分别注入两个正交的通道中。液滴的形成发生在这两个通道的交汇处。

参考文献

以下是关于液滴生成与操控的部分微流控研究文献。如果您希望将特定文献添加到此列表中,请随时联系我们!

1. Baroud, C. N., Gallaire, F., & Dangla, R. (2010). Dynamics of microfluidic droplets. Lab on a Chip, 10(16), 2032-2045.

2. Teh, S. Y., Lin, R., Hung, L. H., & Lee, A. P. (2008). Droplet microfluidics. Lab on a Chip, 8(2), 198-220.

3. I Solvas, X. (2011). Droplet microfluidics: recent developments and future applications. Chemical Communications, 47(7), 1936-1942.

4. Weibel, D. B., & Whitesides, G. M. (2006). Applications of microfluidics in chemical biology. Current opinion in chemical biology, 10(6), 584-591.

5. Song, H., Chen, D. L., & Ismagilov, R. F. (2006). Reactions in droplets in microfluidic channels. Angewandte chemie international edition, 45(44), 7336-7356.

6. Brouzes, E., Medkova, M., Savenelli, N., Marran, D., Twardowski, M., Hutchison, J. B., … & Samuels, M. L. (2009). Droplet microfluidic technology for single-cell high-throughput screening. Proceedings of the National Academy of Sciences, 106(34), 14195-14200.

内容概要:本文详细介绍了在COMSOL中使用不同参数估计方法(如最小二乘法、遗传算法和贝叶斯推断)来跟踪输出浓度并与实验值进行误差比较的过程。首先,文章简述了扩散方程及其在COMSOL中的应用背景。接着,分别阐述了最小二乘法、遗传算法和贝叶斯推断的具体实现步骤,包括目标函数的定义、参数设置以及优化求解器的选择。随后,讨论了如何通过后处理功能提取计算得到的浓度数据,并将其与实验值进行比较,以评估各方法的准确性。最后,强调了选择合适的方法对于提高模型精度的重要性,并分享了一些实践经验,如避免自动网格细化、使用动态权重调整等技巧。 适合人群:从事工程仿真、化学工程、材料科学等领域研究的技术人员,特别是那些需要利用COMSOL进行参数估计和模型验证的研究者。 使用场景及目标:① 使用COMSOL进行复杂物理现象(如扩散、反应等)的数值模拟;② 对比不同参数估计方法的性能,选择最适合特定应用场景的方法;③ 提高模型预测精度,确保仿真结果与实验数据的一致性。 其他说明:文中提供了大量实用的代码片段和技术细节,帮助读者更好地理解和应用这些方法。同时,作者还分享了许多实际操作中的经验和教训,提醒读者注意常见陷阱,如局部最优、参数相关性和数据预处理等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值