- 博客(232)
- 收藏
- 关注
原创 机器学习材料性能预测与材料基因工程应用实战
传统的材料研发技术是通过实验合成表征对材料进行试错和验证,而过去的计算手段受限于算法效率,无法有效求解实际工业生产中面临的复杂问题。近几年随着大数据和人工智能介入,通过采用支持向量机、神经网络等机器学习算法训练数据集来构建模型,以预测材料的结构、吸附特性、电学特性、催化性能、力学特性和热力学特性等性能,大大推动了新型材料的发现和传统材料的更新,预测结果甚至能够达到与高保真模型基本相同的精度,且计算成本很低。
2026-01-22 18:01:37
602
原创 LAMMPS分子动力学模拟技术与应用
近年来,分子动力学及计算化学发展十分迅速,目前已经成为发表重要科研成果的“标准配置”,发表高水平文章更是不能缺少理论计算的助力,并且被广泛应用在化学、物理材料和生物等学科中。其中分子动力学软件LAMMPS可以模拟气态、液态、固态及混合态体系,并且计算速度快,计算能力强,采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗粒化等。课程让大家掌握LAMMPS是什么?能干什么?怎么用?帮助学员运行并理解跟自己科研方向相近的例子,建立正确的仿真思路。
2026-01-21 18:10:10
608
原创 复合材料结构固化及微观、宏观切削加工仿真专题
在复合材料结构工艺过程中,热传导、热对流和化学交联反应等物理化学变化交互共存,树脂流动固化、纤维密实行为异常复杂,极易在复合材料厚度方向产生温度、固化度梯度,进而导致内应力、固化变形和孔隙等缺陷产生。结合上述问题,采用实验手段费时费力,且难以准确监测实际固化过程。因此,有必要利用数值仿真方法对复合材料结构固化过程进行研究,通过开展精确有限元计算及多物理场仿真,提前对固化过程进行有效预报,对优化工艺、降低生产成本具有重要意义。
2026-01-20 18:09:00
462
原创 第一性原理计算方法及应用
材料基因工程是近年来国际材料领域兴起的颠覆性前沿技术,随着国内计算机技术的快速发展,多尺度材料模拟计算成为材料研究中不可或缺的一部分。计算材料学主要致力于建立可预测或可描述的模型,以指导实验研究,可以减少实验试错次数和降低成本,预测实验条件无法实现的相关材料的结构和性质(超高温、高压等)。随着密度泛函理论的发展,在物理、化学和生物等多门学科中,密度泛函理论已成为强有力的研究工具。密度泛函理论研究涉及的体系包括零维(如小分子、团簇、量子点)、一维(如纳米管)、二维(如固体表面、二维材料)、三维(如高温超导)
2026-01-19 18:07:02
612
原创 金属材料多尺度计算模拟技术与应用:微观机理到宏观性能的集成工作流
金属材料作为工业基础的核心材料,其性能优化与设计一直是材料科学、机械工程和航空航天等领域的研究热点。传统实验方法在探索材料微观机理与宏观性能关联时,往往面临成本高、周期长、尺度局限等挑战,难以全面揭示材料变形、相变、损伤等复杂行为的跨尺度机制。随着计算科学的飞速发展,多尺度计算模拟技术通过整合第一性原理计算、分子动力学、相场法、晶体塑性有限元等方法,构建了从电子/原子尺度到宏观连续尺度的集成工作流,实现了材料性能的精准预测与理性设计。
2026-01-15 17:59:08
584
原创 机器学习在智能水泥基复合材料中的应用与实践
在人工智能与复合材料技术融合的背景下,复合材料的研究和应用正迅速发展,创新解决方案层出不穷。从复合材料性能的精确预测到复杂材料结构的智能设计,从数据驱动的材料结构优化到多尺度分析,人工智能技术正以其强大的数据处理能力和模式识别优势,推动复合材料领域的技术进步。据最新研究动态,目前在复合材料领域的机器学习应用主要集中在以下几个方面:材料设计优化:机器学习可以用于预测复合材料的微观结构和宏观性能,帮助设计出更轻、更强、更耐用的材料。
2026-01-14 18:18:28
564
原创 FDTD与Python联合仿真的超表面智能设计技术与应用
拓扑优化、遗传算法、深度学习等逆向设计方法,正在替代传统的手动试错,赋能科研人员探索远超人类直觉的复杂电磁结构,催生出一系列具有突破性性能的超构透镜、全息、成像器件,并多次发表于《Nature》、《Science》等顶级期刊。国家战略层面,我国在人工智能、光计算、量子信息、高端光学仪器等领域的宏伟蓝图,对兼具“深厚物理背景”与“先进算法实践能力” 的复合型顶尖人才提出了迫切需求。从事AR/VR光学引擎、超构透镜、成像系统、光学传感、光通信器件等产品的研发工程师与设计师等。相位、透射率与截面尺寸关系。
2026-01-13 18:23:29
540
原创 人工智能赋能聚合物及复合材料模型应用与实践
AI 在聚合物及复合材料领域的理论基础和应用概述传统机器学习,深度学习和生成式 AI 方法概述AI for 聚合物(及复合材料)研究的核心问题(聚合物多层次结构表示、性能预测、结构设计等)聚合物研究的 AI 方法论框架4.1 数据驱动与机理驱动的协同(第一性原理到领域知识)4.2 聚合物智能创制研究全流程:从数据到模型,从预测到设计。
2026-01-09 18:06:18
642
原创 人工智能与数据驱动方法加速金属材料设计与应用
金属材料在航空航天、能源装备、交通运输、生物医疗等关键领域扮演着重要角色。传统金属材料研发依赖“试错法”,周期长、成本高,难以满足高性能、多功能材料的快速设计需求。人工智能与数据驱动方法的兴起,为金属材料研究带来范式变革,通过整合材料数据库、机器学习、主动学习与物理信息模型,可实现材料成分、工艺、结构、性能之间的智能映射与逆向设计,大幅提升材料研发效率与创新能力。
2026-01-07 18:04:08
922
原创 金属材料多尺度计算模拟技术与应用:微观机理到宏观性能的集成工作流
金属材料作为工业基础的核心材料,其性能优化与设计一直是材料科学、机械工程和航空航天等领域的研究热点。传统实验方法在探索材料微观机理与宏观性能关联时,往往面临成本高、周期长、尺度局限等挑战,难以全面揭示材料变形、相变、损伤等复杂行为的跨尺度机制。随着计算科学的飞速发展,多尺度计算模拟技术通过整合第一性原理计算、分子动力学、相场法、晶体塑性有限元等方法,构建了从电子/原子尺度到宏观连续尺度的集成工作流,实现了材料性能的精准预测与理性设计。
2026-01-06 18:04:42
722
原创 基于 AI- - 有限元融合的复合材料多尺度建模与性能预测前沿技术
随着航空航天、新能源等领域对复合材料性能需求的升级,传统“试错法”研发模式面临瓶颈:微观结构设计依赖经验、多尺度耦合机理不透明、全参数空间探索计算成本高昂。与此同时,人工智能与高性能计算的融合为材料科学提供了新范式——通过构建“物理仿真+数据驱动”的混合模型,实现材料性能的精准预测与设计优化。国际趋势方面,Nature 等顶尖学术期刊持续聚焦“多尺度建模”、“AI+复合材料”等交叉研究前沿,ABAQUS 与 AI 技术融合驱动的复合材料建模与仿真创新研究正成为全球热点。
2026-01-04 17:57:06
920
原创 人工智能与数据驱动方法加速金属材料设计与应用
金属材料在航空航天、能源装备、交通运输、生物医疗等关键领域扮演着重要角色。传统金属材料研发依赖“试错法”,周期长、成本高,难以满足高性能、多功能材料的快速设计需求。人工智能与数据驱动方法的兴起,为金属材料研究带来范式变革,通过整合材料数据库、机器学习、主动学习与物理信息模型,可实现材料成分、工艺、结构、性能之间的智能映射与逆向设计,大幅提升材料研发效率与创新能力。
2025-12-31 18:14:13
973
原创 计算化学与人工智能驱动的 MOFs 性能预测与筛选技术
金属有机框架材料(MOFs)作为一种新兴的多孔晶体材料,在气体吸附与分离、催化、储能、传感等领域展现出巨大潜力。然而,MOFs 结构多样、成分复杂,传统实验筛选方法耗时耗力,难以实现大规模高效设计。计算化学与人工智能技术的深度融合,为 MOFs 的理性设计与性能优化提供了革命性工具。通过结合量子化学计算、分子模拟与机器学习,研究者能够从海量结构数据中挖掘“结构-性能”关系,预测未知 MOFs 的吸附、分离、稳定性等关键性质,实现高通量虚拟筛选与定向设计,极大加速新材料发现进程。
2025-12-30 18:18:35
572
原创 金属结构疲劳寿命 预测与健康监测技术
随着航空航天、轨道交通、海洋工程等高端装备领域向着高参数、长寿命、高可靠性的方向飞速发展,金属结构所承受的载荷工况愈发严苛,其疲劳失效已成为威胁结构安全的核心问题。多物理场感知与人工智能技术的融合,正为结构疲劳领域带来革命性变革—通过“物理机理驱动+数据智能赋能”的融合范式,实现从“被动安全校核”到“主动寿命预测与健康管理”的跨越。国际前沿方面,顶级期刊持续重点关注“能量法疲劳理论”、“数据驱动寿命预测”等交叉学科方向。
2025-12-29 18:10:54
589
原创 人工智能赋能聚合物及复合材料模型应用与实践
AI 在聚合物及复合材料领域的理论基础和应用概述传统机器学习,深度学习和生成式 AI 方法概述AI for 聚合物(及复合材料)研究的核心问题(聚合物多层次结构表示、性能预测、结构设计等)聚合物研究的 AI 方法论框架4.1 数据驱动与机理驱动的协同(第一性原理到领域知识)4.2 聚合物智能创制研究全流程:从数据到模型,从预测到设计。
2025-12-26 18:20:03
752
原创 基于 AI- - 有限元融合的复合材料多尺度建模与性能预测前沿技术
随着航空航天、新能源等领域对复合材料性能需求的升级,传统“试错法”研发模式面临瓶颈:微观结构设计依赖经验、多尺度耦合机理不透明、全参数空间探索计算成本高昂。与此同时,人工智能与高性能计算的融合为材料科学提供了新范式——通过构建“物理仿真+数据驱动”的混合模型,实现材料性能的精准预测与设计优化。国际趋势方面,Nature 等顶尖学术期刊持续聚焦“多尺度建模”、“AI+复合材料”等交叉研究前沿,ABAQUS 与 AI 技术融合驱动的复合材料建模与仿真创新研究正成为全球热点。
2025-12-25 18:07:19
1172
原创 金属材料多尺度计算模拟技术与应用:微观机理到宏观性能的集成工作流
金属材料作为工业基础的核心材料,其性能优化与设计一直是材料科学、机械工程和航空航天等领域的研究热点。传统实验方法在探索材料微观机理与宏观性能关联时,往往面临成本高、周期长、尺度局限等挑战,难以全面揭示材料变形、相变、损伤等复杂行为的跨尺度机制。随着计算科学的飞速发展,多尺度计算模拟技术通过整合第一性原理计算、分子动力学、相场法、晶体塑性有限元等方法,构建了从电子/原子尺度到宏观连续尺度的集成工作流,实现了材料性能的精准预测与理性设计。
2025-12-23 18:16:07
894
原创 人工智能赋能聚合物及复合材料模型应用与实践
AI 在聚合物及复合材料领域的理论基础和应用概述传统机器学习,深度学习和生成式 AI 方法概述AI for 聚合物(及复合材料)研究的核心问题(聚合物多层次结构表示、性能预测、结构设计等)聚合物研究的 AI 方法论框架4.1 数据驱动与机理驱动的协同(第一性原理到领域知识)4.2 聚合物智能创制研究全流程:从数据到模型,从预测到设计。
2025-12-19 17:52:34
571
原创 FDTD 与 Python 联合仿真的超表面智能设计技术与应用
光子学与电磁学领域正经历着由“数值模拟”向“智能设计” 的范式跃迁。传统依赖于经验与参数扫描的光学设计方法,在面对超表面等多自由度、高性能指标的复杂逆设计问题时,已显得效率低下且难以触及全局最优解。将 FDTD 电磁仿真与 Python 智能优化算法融合,正成为突破传统瓶颈、实现器件性能提升的核心驱动力,重塑着从基础研究到工程应用的光学设计全链条。在国际前沿领域,超表面的研究已从“功能实现”进入“性能设计智能化” 的新阶段。
2025-12-18 17:54:03
832
原创 COMSOL锂离子电池仿真技术与应用
在锂离子电池开发过程中,设计参数太多,实验任务繁重;各参数对电池性能的影响不明确,实验设计带有一定的盲目性,有时候甚至会出现费时、费力、费资金,却吃力不讨好的现象。改善这一状况的契机是将电池仿真技术应用到电池中来。锂离子电池仿真技术可以采用等效电路模型、半经验模型、电化学模型等。基于仿真能够很好的解决上文提到的问题。通过对电池微观行为进行研究,明晰电池内部多现象机理,并将其数值化,通过数值方法实现对物理特征联合计算,建立完整的电池模型。
2025-12-17 18:15:27
680
原创 COMSOL燃料电池仿真技术与应用
COMSOL Multiphysics具有强大的多物理场全耦合仿真分析功能、高效的计算性能,可以保证数值仿真的高度精确,已被广泛应用于各个学科领域,近年来运用COMSOL来解决电化学实际工程问题也越来越普遍。电化学仿真技术通过对电池微观行为进行研究,明晰电池内部多现象机理,并将其数值化,通过数值方法实现对物理特征联合计算,建立完整的电池模型。
2025-12-16 18:00:46
825
原创 智能计算模拟:第一性原理+分子动力学+机器学习
第一性原理、分子动力学与机器学习三者的交汇融合已在相关研究领域展现强劲的研究热潮。借助第一性原理计算揭示材料内在的量子特性,并结合分子动力学模拟探究材料在实际环境下的动态行为;运用机器学习算法与上述方法结合,开发高性能预测模型与模拟工具,能有效缩短研发周期,降低计算成本,实现对新型化合物性质的高精度预测。“第一性原理+分子动力学+机器学习”三位一体的综合手段,已经成为模拟计算的一个前沿方向,为解决传统计算化学方法面临的挑战提供了新的解决方案。
2025-12-12 18:09:19
747
原创 机器学习驱动的智能化电池管理技术与应用
在此背景下,智能化、高精度、高可靠的电池管理技术已成为产业升级和学术研究的关键突破口。课程在SOC、SOH、RUL、热失控预警等每个核心应用模块后,都有具体的技术实例(如“基于支持向量机的SOC估计”、“基于深度学习的寿命预测方法”、“基于实车运行大数据的电池SOH估计”、“基于深度学习的异常电芯检测”等)。适合汽车工业、电力工业、自动化技术、BMS算法开发、电池系统研发、新能源汽车工程、储能系统管理、环境科学与资源利用、计算机软件及应用等专业和领域的科研人员、工程师、及相关行业从业者、跨领域研究人员。
2025-12-11 18:07:41
914
原创 人工智能与数据驱动方法加速金属材料设计与应用
金属材料在航空航天、能源装备、交通运输、生物医疗等关键领域扮演着重要角色。传统金属材料研发依赖“试错法”,周期长、成本高,难以满足高性能、多功能材料的快速设计需求。人工智能与数据驱动方法的兴起,为金属材料研究带来范式变革,通过整合材料数据库、机器学习、主动学习与物理信息模型,可实现材料成分、工艺、结构、性能之间的智能映射与逆向设计,大幅提升材料研发效率与创新能力。
2025-12-10 18:10:00
962
原创 计算化学与人工智能驱动的MOFs性能预测与筛选技术
金属有机框架材料(MOFs)作为一种新兴的多孔晶体材料,在气体吸附与分离、催化、储能、传感等领域展现出巨大潜力。然而,MOFs结构多样、成分复杂,传统实验筛选方法耗时耗力,难以实现大规模高效设计。计算化学与人工智能技术的深度融合,为MOFs的理性设计与性能优化提供了革命性工具。通过结合量子化学计算、分子模拟与机器学习,研究者能够从海量结构数据中挖掘“结构-性能”关系,预测未知MOFs的吸附、分离、稳定性等关键性质,实现高通量虚拟筛选与定向设计,极大加速新材料发现进程。
2025-12-09 18:20:44
558
原创 5 个工业智能专题:装备 / 故障 / 材料领域的技术解析
从事结构设计、可靠性分析、仿真优化及多学科协同优化的工程技术人员、高校研究生、科研人员与管理人员,以及机械工程、航空航天科学与工程、能源与动力、计算机工程、自动化技术、工业通用技术、车辆工程、船舶与海洋工程、材料科学、化工、电力、建筑等工程与工业领域的科研人员、工程师、行业从业者及跨领域研究人员。1.1 基础模型:SVR、决策树、随机森林、感知机、XGBoost、LGBM、AdaBoost等,模型评估策略:MAE、RMSE、R²、Accuracy、F1等。
2025-12-04 18:17:34
802
原创 智能光学计算成像技术与应用
智能光学计算成像是一个将人工智能(AI)与光学成像技术相结合的前沿领域,它通过深度学习、光学神经网络、超表面光学(metaphotonics)、全息技术和量子光学等技术,推动光学成像技术的发展。以下是智能光学计算成像的一些关键进展和应用:1.光纤成像:深度学习在光纤成像中的应用进展显著,包括通过条件生成对抗网络实现高速多模光纤成像系统2.光谱成像:当前的光谱成像技术包括多通道滤光片、基于深度学习和波长响应曲线求逆问题的优化实现,以及衍射光栅、多路复用、超表面等技术,用于获取高光谱信息。
2025-12-02 18:14:22
835
原创 机器学习驱动的智能化电池管理技术与应用
在此背景下,智能化、高精度、高可靠的电池管理技术已成为产业升级和学术研究的关键突破口。课程在SOC、SOH、RUL、热失控预警等每个核心应用模块后,都有具体的技术实例(如“基于支持向量机的SOC估计”、“基于深度学习的寿命预测方法”、“基于实车运行大数据的电池SOH估计”、“基于深度学习的异常电芯检测”等)。适合汽车工业、电力工业、自动化技术、BMS算法开发、电池系统研发、新能源汽车工程、储能系统管理、环境科学与资源利用、计算机软件及应用等专业和领域的科研人员、工程师、及相关行业从业者、跨领域研究人员。
2025-12-01 18:14:58
806
原创 人工智能赋能聚合物及复合材料模型应用与实践
近年来,生成式人工智能(包括大语言模型、分子生成模型等)在聚合物及复合材料领域掀起革命性浪潮,其依托数据驱动与机理协同,从海量数据中挖掘构效关系、通过分子结构表示(如 SMILES、BigSMILES)与生成模型(VAE、GAN、Diffusion 等)实现分子逆向设计的核心能力,正颠覆依赖实验试错或量子计算的传统研发模式 —— 突破周期长、成本高、多目标优化难等瓶颈,快速预测材料性能、生成新型结构,加速从实验室到产业化进程;
2025-11-28 18:17:20
533
原创 金属结构疲劳寿命预测与健康监测技术—— 融合能量法、红外热像技术与深度学习的前沿实践 理论基础与核心方法
全球工业界与学术界正积极探索将物理机理模型与深度学习相结合,利用红外热像技术非接触、全场监测的优势,深度挖掘疲劳过程中的热-力耦合信息,构建能实时评估损伤状态、精准预测剩余寿命的智能模型,推动结构健康监测(SHM)向数字化、智能化方向演进。金属结构疲劳寿命预测作为一门融合“固体力学-热物理学-数据科学”的深度交叉学科,亟需具备跨学科能力的复合型人才:既要深刻理解疲劳损伤的物理本质与理论体系,又需掌握有限元仿真、数据处理等现代工程工具,同时能驾驭深度学习模型进行时序数据挖掘与智能预测。
2025-11-26 18:14:16
282
原创 人工智能赋能聚合物及复合材料模型应用与实践
2.培训对象材料科学、电力工业、航空航天科学与工程、有机化工、无机化工、建筑科学与工程、自动化技术、工业通用技术、汽车工业、金属学与金属工艺、机械工业、船舶工业等领域的科研人员、工程师、及相关行业从业者、跨领域研究人员。5、工具与平台应用:介绍Tensorflow、Pytorch、HuggingFace、Langchain、Gradio等先进的深度学习模块和工具,使学员能够熟练使用这些工具进行高分子材料的研发工作,提升工作效率。3.4均聚物性能研究(如耐热性、力学性能、介电性能、透气性/阻燃性等)(实践)
2025-11-24 17:50:32
649
原创 COMSOL声学多物理场仿真技术与应用
随着声学技术在各个领域的广泛应用,对于声学仿真的专业人才需求日益增长。Comsol软件作为多物理场仿真的先进工具,其声学模块能够模拟声波在不同介质中的传播和交互,对于声学设计和研究具有重要意义声学仿真技术在建筑声学、电声学、超声医学、噪声控制、振动分析等领域都有广泛应用。据调查,COMSOL声学模块主要应用以下几个方面:1、声学结构优化:通过拓扑优化等方法,设计出性能更优、成本更低的声学结构。2、无损检测:利用声波进行材料和结构的无损检测,评估其完整性和性能。
2025-11-14 18:00:05
672
原创 深度学习驱动智能超材料设计与应用
在深度学习与超材料融合的背景下,不仅提高了设计的效率和质量,还为实现定制化和精准化的治疗提供了可能,展现了在材料科学领域的巨大潜力。深度学习可以帮助实现超材料结构参数的优化、电磁响应的预测、拓扑结构的自动设计、相位的预测及结构筛选。适合材料科学、机械工程、计算机工程、建筑科学、土木工程、电子工程、航空航天、物理学、自动化技术等领域的科研人员、工程师、及相关行业从业者、跨领域研究人员。通过机器学习算法,实现精准治疗目的的设计。5.基于数据的预测模型:基于历史数据预测超材料的性能,为设计提供指导,降本增效。
2025-11-13 18:14:15
893
原创 声学超材料与AI驱动的声振仿真优化设计
声学超材料作为新兴的前沿交叉领域,正推动声学设计从“被动应对”向“主动智能”变革。传统声振设计在面对低频减振、复杂波场调控等挑战时,常依赖经验试错,难以高效寻优。将有限元/边界元等数值仿真与人工智能算法深度融合,已成为突破性能瓶颈、实现声学器件性能跨越的核心动力。在国际前沿领域,声学超材料研究已从“带隙探索”进入“功能定制”新阶段。遗传算法、深度学习等逆向设计方法,助力开发出声隐身斗篷、超分辨声成像等颠覆性器件,成果频现顶级期刊。掌握“仿真+AI”联合设计能力,是在智能声学国际竞争中占得先机的关键。
2025-11-12 18:15:04
506
原创 FDTD与Python联合仿真的超表面智能设计技术与应用
光子学与电磁学领域正经历着由“数值模拟”向“智能设计” 的范式跃迁。传统依赖于经验与参数扫描的光学设计方法,在面对超表面等多自由度、高性能指标的复杂逆设计问题时,已显得效率低下且难以触及全局最优解。将FDTD电磁仿真与Python智能优化算法融合,正成为突破传统瓶颈、实现器件性能提升的核心驱动力,重塑着从基础研究到工程应用的光学设计全链条。在国际前沿领域,超表面的研究已从“功能实现”进入“性能设计智能化” 的新阶段。
2025-11-10 18:10:09
928
原创 FDTD与Python联合仿真的超表面智能设计技术与应用
光子学与电磁学领域正经历着由“数值模拟”向“智能设计” 的范式跃迁。传统依赖于经验与参数扫描的光学设计方法,在面对超表面等多自由度、高性能指标的复杂逆设计问题时,已显得效率低下且难以触及全局最优解。将FDTD电磁仿真与Python智能优化算法融合,正成为突破传统瓶颈、实现器件性能提升的核心驱动力,重塑着从基础研究到工程应用的光学设计全链条。在国际前沿领域,超表面的研究已从“功能实现”进入“性能设计智能化” 的新阶段。
2025-11-06 17:51:14
690
原创 数据驱动智能故障诊断技术 应用与实践
递进式案例实践教学:通过包络谱分析轴承故障、1D-CNN 自动特征提取、LSTM 寿命预测、DANN 跨域。二、基于 PYTORCH 版基于注意力机制的小样本故障诊断的 1D-Grad-CAM 融合诊断模型 —三、基于支持向量机 (SVM)、k 最近邻 (KNN)、随机森林 (RF)、XGBoost 和人工神。突出物理机理融合,掌握诊断技术新范式: :引入物理信息神经网络(PINN),教授如何将动力学方。一、基于 SVM 的滚动轴承外圈故障识别实验 —— 通过提取 RMS、峭度特征实现二分类诊。
2025-10-29 18:12:51
842
原创 基于AI智能算法的装备结构可靠性分析与优化设计技术
适合从事结构设计、可靠性分析、仿真优化的工程技术人员、机械工程、航空宇航、可靠性工程、优化算法等研究领域的高校研究生、从事高端装备系统设计与可靠性评估的科研人员、负责产品研发流程、可靠性保障与多学科协同优化的管理人员等。国家需求层面,我国《“十四五”智能制造发展规划》提出了“大力发展智能制造装备重要任务,主要包括基础零部件和装置、通用智能制造装备、专用智能制造装备以及融合了数字孪生、人工智能等新技术的新型智能制造装备”。1.5. 多目标权衡优化:性能-可靠性-成本的Pareto前沿(NSGA-II算法)
2025-10-28 18:24:47
673
原创 智能光学计算成像技术与应用
智能光学计算成像是一个将人工智能(AI)与光学成像技术相结合的前沿领域,它通过深度学习、光学神经网络、超表面光学(metaphotonics)、全息技术和量子光学等技术,推动光学成像技术的发展。以下是智能光学计算成像的一些关键进展和应用:光纤成像:深度学习在光纤成像中的应用进展显著,包括通过条件生成对抗网络实现高速多模光纤成像系统光谱成像:当前的光谱成像技术包括多通道滤光片、基于深度学习和波长响应曲线求逆问题的优化实现,以及衍射光栅、多路复用、超表面等技术,用于获取高光谱信息。
2025-09-02 16:55:12
832
原创 机器学习赋能的智能光子学器件系统研究与应用
3.1 机器学习基础概念3.2 监督学习与无监督学习3.3 简单常见机器学习算法简介(如线性回归、SVM 等)3.4 Python 编程基础Ø Python语言与特点简介Ø 基本语法与特色数据结构(列表,元组,字典)Ø Numpy 科学计算库的使用Ø 数据可视化工具Matplotlib 的使用案例操作:绘制函数与分形图形3.5 深度学习框架 Pytorch和Tensorflow简介案例操作:回归算法的实现。
2025-09-01 17:03:35
690
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅