python 解决OpenCV显示中文字符

本文介绍了四种在图片中添加中文字符的方法,包括使用PIL结合OpenCV,opencv重新编译带freetype,freetype-py库以及OpenCV5.0的滚动版本。每种方法都有其优缺点,如速度和实现复杂性考虑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因工作需要,要在图片中显示中文字符,并且要求速度足够快,在网上搜罗一番后,总结下几个解决方法。

1.方法一:转PIL后使用PIL相关函数添加中文字符

from PIL import Image, ImageDraw, ImageFont
import cv2
import numpy as np

# cv2读取图片,名称不能有汉字
img = cv2.imread('pic1.jpeg') 
# cv2和PIL中颜色的hex码的储存顺序不同
cv2img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 
pilimg = Image.fromarray(cv2img)
# PIL图片上打印汉字
draw = ImageDraw.Draw(pilimg) # 图片上打印
#simsun 宋体
font = ImageFont.truetype("simsun.ttf", 40, encoding="utf-8") 
#位置,文字,颜色==红色,字体引入
draw.text((20, 20), "你好", (255, 0, 0), font=font) 
# PIL图片转cv2 图片
cv2charimg = cv2.cvtColor(np.array(pilimg), cv2.COLOR_RGB2BGR)
cv2.imshow("img", cv2charimg)
cv2.waitKey (0)
cv2.destroyAllWindows()

存在的缺点:cv2->pil 中 Image.fromarray(img)存在耗时4~5ms

2.方法二:opencv重新编译带freetype

编译过程略。

import cv2
import numpy as np

# 创建一个黑色的图像
img = np.zeros((300, 500, 3), dtype=np.uint8)

# 中文文本
text = '你好,OpenCV!'

# 设置字体相关参数
font_path = 'path/to/your/chinese/font.ttf'  # 替换为你的中文字体文件路径
font_size = 24
font_color = (255, 255, 255)
thickness = 2

# 使用 truetype 字体加载中文字体
font = cv2.freetype.createFreeType2()
font.loadFontData(font_path)

# 在图像上放置中文文本
position = (50, 150)
font.putText(img, text, position, font_size, font_color, thickness=thickness)

# 显示图像
cv2.imshow('Image with Chinese Text', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

缺点:编译过程复杂繁琐,容易报一些列的错误,编译时确保已安装第三方库freetype和harfbuzz,并且配置编译参数时需打开freetype。

3.方法三:使用freetype-py

pip install freetype-py

ft.py


                                                              
import numpy as np
import freetype
import copy
import pdb
import time
 

class PutChineseText(object):
    def __init__(self, ttf, text_size):
        self._face = freetype.Face(ttf)

        hscale = 1.0
        self.matrix = freetype.Matrix(int(hscale)*0x10000, int(0.2*0x10000),int(0.0*0x10000), int(1.1*0x10000))
        self.cur_pen = freetype.Vector()
        self.pen_translate = freetype.Vector()
        self._face.set_transform(self.matrix, self.pen_translate)

        self._face.set_char_size(text_size * 64)
        metrics = self._face.size
        ascender = metrics.ascender/64.0
 
        #descender = metrics.descender/64.0
        #height = metrics.height/64.0
        #linegap = height - ascender + descender
        self.ypos = int(ascender)

        self.pen = freetype.Vector()

 
    def draw_text(self, image, pos, text, text_color):
        '''
        draw chinese(or not) text with ttf
        :param image:     image(numpy.ndarray) to draw text
        :param pos:       where to draw text
        :param text:      the context, for chinese should be unicode type
        :param text_size: text size
        :param text_color:text color
        :return:          image
        '''
        
 
        # if not isinstance(text, unicode):
        #     text = text.decode('utf-8')
        img = self.draw_string(image, pos[0], pos[1]+self.ypos, text, text_color)
        return img
 
    def draw_string(self, img, x_pos, y_pos, text, color):
        '''
        draw string
        :param x_pos: text x-postion on img
        :param y_pos: text y-postion on img
        :param text:  text (unicode)
        :param color: text color
        :return:      image
        '''
        prev_char = 0
        
        self.pen.x = x_pos << 6   # div 64
        self.pen.y = y_pos << 6
        
        image = copy.deepcopy(img)

        for cur_char in text:
            
            self._face.load_char(cur_char)
            # kerning = self._face.get_kerning(prev_char, cur_char)
            # pen.x += kerning.x
            
            slot = self._face.glyph
            bitmap = slot.bitmap

            self.pen.x += 0
            self.cur_pen.x = self.pen.x
            self.cur_pen.y = self.pen.y - slot.bitmap_top * 64

            self.draw_ft_bitmap(image, bitmap, self.cur_pen, color)
 
            self.pen.x += slot.advance.x
            prev_char = cur_char
        return image
 
    def draw_ft_bitmap(self, img, bitmap, pen, color):
        '''
        draw each char
        :param bitmap: bitmap
        :param pen:    pen
        :param color:  pen color e.g.(0,0,255) - red
        :return:       image
        '''
        x_pos = pen.x >> 6
        y_pos = pen.y >> 6
        cols = bitmap.width
        rows = bitmap.rows
 
        glyph_pixels = bitmap.buffer
 
        for row in range(rows):
            for col in range(cols):
                if glyph_pixels[row*cols + col] != 0:
                    img[y_pos + row][x_pos + col][0] = color[0]
                    img[y_pos + row][x_pos + col][1] = color[1]
                    img[y_pos + row][x_pos + col][2] = color[2]
 
 
if __name__ == '__main__':
    # just for test
    import cv2
 
    line = '你好'
    img = np.zeros([300,300,3])
 
    color_ = (0,255,0) # Green
    pos = (40, 40)
    text_size = 24
 
    ft = PutChineseText('font/simsun.ttc',text_size=20)
    t1 = time.time()
    image = ft.draw_text(img, pos, line, color_)
    print(f'draw load . ({time.time() - t1:.3f}s)')
 
    cv2.imshow('ss', image)
    cv2.waitKey(0)

缺点:每个字符耗时在0.3~1ms左右,耗时略大。

4.方法四:使用OpenCV5.0

4.1 编译opencv5.x版本

编译过程较复杂,不推荐。

4.2 使用rolling版本

卸载原先安装的opencv

pip uninstall opencv-python
pip uninstall opencv-contrib-python

安装rolling版本

pip install opencv-python-rolling
pip install opencv-contrib-python-rolling

安装完毕后,cv2.putText即可支持中文字符。

缺点:5.0版本暂未正式发布,可能存在不稳定情况

优点:耗时几乎没有

### 关于面包板电源模块 MB102 的 USB 供电规格及兼容性 #### 1. **MB102 基本功能** 面包板电源模块 MB102 是一种常见的实验工具,主要用于为基于面包板的小型电子项目提供稳定的电压输出。它通常具有两路独立的稳压输出:一路为 5V 和另一路可调电压(一般范围为 3V 至 12V)。这种设计使得它可以满足多种芯片和传感器的不同工作电压需求。 #### 2. **USB 供电方式** MB102 支持通过 USB 接口供电,输入电压通常是标准的 5V DC[^1]。由于其内部集成了 LM7805 稳压器以及可调节电位器控制的直流-直流变换电路,因此即使输入来自电脑或其他低功率 USB 设备,也能稳定地向负载供应电力。不过需要注意的是,如果项目的功耗较高,则可能超出某些 USB 端口的最大电流能力(一般是 500mA),从而引起不稳定现象或者保护机制启动断开连接的情况发生。 #### 3. **兼容性分析** 该型号广泛适用于各种微控制器单元 (MCU),特别是那些像 Wemos D1 R32 这样可以通过杜邦线轻松接入并共享相同逻辑级别的系统[^2]。另外,在提到 Arduino Uno 板时也表明了良好的互操作性,因为两者均采用相似的标准接口定义与电气特性参数设置[^4]: - 对于需要 3.3V 工作环境下的组件来说,只需调整好对应跳线帽位置即可实现精准匹配; - 当涉及到更多外围扩展应用场合下,例如带有多重模拟信号采集任务的情形里,利用 MB102 提供干净无干扰的基础能源供给就显得尤为重要了[^3]。 综上所述,对于打算构建以单片机为核心的原型验证平台而言,选用具备良好声誉记录且易于获取配件支持服务链路上下游资源丰富的品牌产品——如这里讨论过的这款特定类型的配电装置不失为明智之举之一。 ```python # 示例 Python 代码展示如何检测硬件状态 import machine pin = machine.Pin(2, machine.Pin.IN) if pin.value() == 1: print("Power supply is stable.") else: print("Check your connections and power source.") ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值