高等数学笔记:三角积分星球

三角积分星球

一、三角定积分

01 [ 0 , π / 2 ] [0,\pi/2] [0,π/2] 区间计算

定理:正余弦互换
  • ∫ 0 π 2 f ( sin ⁡ x , cos ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x , sin ⁡ x ) d x \displaystyle{ \int_{0}^{\frac{\pi}{2}} f(\sin x,\cos x) d x=\int_{0}^{\frac{\pi}{2}} f(\cos x,\sin x) d x } 02πf(sinx,cosx)dx=02πf(cosx,sinx)dx
定理:点火公式
  • ∫ 0 π 2 sin ⁡ n x   d x = ∫ 0 π 2 cos ⁡ n x   d x = I ( n ) = F n ⋅ H n \displaystyle{ \int_{0}^{\frac{\pi}{2}} \sin^n x\ d x=\int_{0}^{\frac{\pi}{2}} \cos^n x\ d x= I(n) }=\mathrm{F_n}\cdot \mathrm{H_{n}} 02πsinnx dx=02πcosnx dx=I(n)=FnHn
  • H n = { 1    ,    n 为奇数 , 点火失败 π 2    ,   n 为偶数 , 点火成功 \displaystyle{ \mathrm{H_{n}}=\left\{\begin{array}{cc}1 \ \ ,\ \ n为奇数,点火失败 \\ \displaystyle{ \frac{\pi}{2} } \ \ ,\ n为偶数,点火成功\end{array}\right. } Hn={1  ,  n为奇数,点火失败2π  , n为偶数,点火成功
  • 点火系数, F n = ( n − 1 ) ! ! n ! ! \displaystyle{ \mathrm{F_n}=\frac{(n-1) ! !}{n ! !} } Fn=n!!(n1)!!
  • 点火值, H n \mathrm{H_n} Hn
定理:烈火公式
  • ∫ 0 π 2 sin ⁡ n x ⋅ cos ⁡ m x   d x = I ( m , n ) = R ⋅ F n ⋅ F m ⋅ H m , n \displaystyle{ \int_{0}^{\frac{\pi}{2}} \sin^n x\cdot\cos^m x\ d x= I(m,n) }= \mathrm{R}\cdot \mathrm{F_n}\cdot \mathrm{F_m}\cdot\mathrm{H_{m,n}} 02πsinnxcosmx dx=I(m,n)=RFnFmHm,n
  • H m , n = { 1    ,    F n , F m 有一个失败,就算失败 π 2    ,   F n , F m 都点火成功,才算成功 \displaystyle{ \mathrm{H_{m,n}}=\left\{\begin{array}{cc}1 \ \ ,\ \ \mathrm{F_n},\mathrm{F_m}有一个失败,就算失败 \\ \displaystyle{ \frac{\pi}{2} } \ \ ,\ \mathrm{F_n},\mathrm{F_m}都点火成功,才算成功\end{array}\right. } Hm,n={1  ,  Fn,Fm有一个失败,就算失败2π  , Fn,Fm都点火成功,才算成功
  • 火箭系数, R = m ! ! ⋅ n ! ! ( m + n ) ! ! \displaystyle{ \mathrm{R}= \frac{m!!\cdot n!!}{(m+n)!!} } R=(m+n)!!m!!n!!
  • 点火系数, F n = ( n − 1 ) ! ! n ! ! \displaystyle{ \mathrm{F_n}=\frac{(n-1) ! !}{n ! !} } Fn=n!!(n1)!!
  • 点火值, H n , H m , H m , n \mathrm{H_n},\mathrm{H_m},\mathrm{H_{m,n}} Hn,Hm,Hm,n

02 葵花点穴手

定理:广义对称性

① 奇偶性

  • ∫ − a a f ( x ) d x = { 0 f ( x ) 为奇函数 2 ∫ 0 a f ( x ) d x f ( x ) 为偶函数 \displaystyle{ \int_{-a}^{a} f(x) d x=\left\{\begin{array}{cc}0 & f(x) 为奇函数 \\ 2\displaystyle{ \int_{0}^{a} f(x) d x } & f(x) 为偶函数 \end{array}\right. } aaf(x)dx= 020af(x)dxf(x)为奇函数f(x)为偶函数

② 对称性

  • ∫ x 0 − a x 0 + a f ( x ) d x = { 0    f ( x ) 关于 ( x 0 , 0 ) 中心对称    2 ∫ x 0 x 0 + a f ( x ) d x f ( x ) 关于 x = x 0 轴对称 \displaystyle{ \int_{x_0-a}^{x_0+a} f(x) d x=\left\{\begin{array}{cc}0 & \ \ f(x)关于(x_0,0)中心对称 \\ \ \ 2 \displaystyle{\int_{x_0}^{x_0+a} f(x) d x } & f(x)关于x=x_0轴对称 \end{array}\right. } x0ax0+af(x)dx= 0  2x0x0+af(x)dx  f(x)关于(x0,0)中心对称f(x)关于x=x0轴对称
定理:广义对称乘法

① 奇偶乘法

  • 奇函数 × 奇函数 = 偶函数,
  • 奇函数 × 偶函数 = 奇函数,
  • 偶函数 × 偶函数 = 偶函数。

② 对称乘法

  • f ( x ) f(x) f(x) 关于 ( x 0 , 0 ) (x_0,0) (x0,0) 中心对称, g ( x ) g(x) g(x) 关于 ( x 0 , 0 ) (x_0,0) (x0,0) 中心对称,则 f ( x ) ⋅ g ( x ) f(x)\cdot g(x) f(x)g(x) 关于 x = x 0 x=x_0 x=x0 轴对称。
  • f ( x ) f(x) f(x) 关于 ( x 0 , 0 ) (x_0,0) (x0,0) 中心对称, g ( x ) g(x) g(x) 关于 x = x 0 x=x_0 x=x0 轴对称,则 f ( x ) ⋅ g ( x ) f(x)\cdot g(x) f(x)g(x) 关于 ( x 0 , 0 ) (x_0,0) (x0,0) 中心对称。
  • f ( x ) f(x) f(x) 关于 x = x 0 x=x_0 x=x0 轴对称, g ( x ) g(x) g(x) 关于 x = x 0 x=x_0 x=x0 轴对称,则 f ( x ) ⋅ g ( x ) f(x)\cdot g(x) f(x)g(x) 关于 x = x 0 x=x_0 x=x0 轴对称。
定理:广义对称乘方

① 奇偶乘方

  • f ( x ) f(x) f(x) 是奇函数,则 $\displaystyle{ \begin{cases}\ f^{2k}(x)是偶函数 \ \ f^{2k+1}(x)是奇函数 \end{cases} }% $

  • f ( x ) f(x) f(x) 是奇函数,则 f k ( x ) f^k(x) fk(x) 是偶函数。

② 对称乘方

  • f ( x ) f(x) f(x) 关于 ( x 0 , 0 ) (x_0,0) (x0,0) 中心对称,则 $\displaystyle{ \begin{cases}\ f^{2k}(x)关于x=x_0轴对称 \ \ f^{2k+1}(x)关于(x_0,0)中心对称 \end{cases} }% $
  • f ( x ) f(x) f(x) 关于 x = x 0 x=x_0 x=x0 轴对称,则 f k ( x ) f^k(x) fk(x) 关于 x = x 0 x=x_0 x=x0 轴对称。
定理:葵花点穴手
  • 当出现轴心重合的函数积分时,心的纵坐标可以直接提出来。

03 积分区间大讨论

(1) 积分转换基础
  • 定理:周期转换

  • f ( x ) f(x) f(x) T \mathrm{T} T 为周期,则 ∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x \displaystyle{ \int_{a}^{a+T} f(x) d x=\int_{0}^{T} f(x) d x } aa+Tf(x)dx=0Tf(x)dx

(2) 积分区间讨论
  • 0 0 0 π 2 \displaystyle{ \frac{\pi}{2} } 2π 的积分

    • 点火公式 + 烈火公式
  • 0 0 0 π \pi π 的积分

    • 利用轴心国理论转化为第一种积分
  • 0 0 0 3 π 2 \displaystyle{ \frac{3\pi}{2} } 23π 的积分

    • 区间分割: ∫ 0 2 π f ( x ) d x − ∫ 3 π 2 2 π f ( x ) d x = A − B \displaystyle{ \int_{0}^{2\pi} f(x) d x-\int_{\frac{3\pi}{2}}^{2\pi} f(x) d x=A-B } 02πf(x)dx23π2πf(x)dx=AB

    • ∫ 3 π 2 2 π sin ⁡ x d x = − I ( 1 )   ,   ∫ 3 π 2 2 π cos ⁡ x d x = I ( 1 ) \displaystyle{ \int_{\frac{3\pi}{2}}^{2\pi} \sin x d x=-I(1)\ ,\ \int_{\frac{3\pi}{2}}^{2\pi} \cos x d x=I(1) } 23π2πsinxdx=I(1) , 23π2πcosxdx=I(1)

    • 由图像可知, B = − I ( m , n ) B=-I(m,n) B=I(m,n)

  • 0 0 0 2 π 2\pi 2π 的积分

    • 利用轴心国理论转化为第一种积分

    • 需要转换两次,每次区间折半

  • − π 2 \displaystyle{ -\frac{\pi}{2} } 2π π 2 \displaystyle{ \frac{\pi}{2} } 2π 的积分

    • 利用奇偶性
(3) 参考用总结
  • 0 0 0 2 π 2\pi 2π 的积分
    • ∫ 0 2 π sin ⁡ n x ⋅ cos ⁡ m x   d x = { 0    m , n 中有奇数    4 I ( m , n ) m , n 全为偶数 \displaystyle{ \int_{0}^{2\pi} \sin^n x\cdot\cos^m x\ d x=\left\{\begin{array}{cc}0 & \ \ m,n中有奇数 \\ \ \ 4I(m,n) & m,n全为偶数 \end{array}\right. } 02πsinnxcosmx dx={0  4I(m,n)  m,n中有奇数m,n全为偶数

二、三角不定积分

01 积分公式

  • sin ⁡ 2 x + cos ⁡ 2 x = 1 \sin ^2 x+\cos ^2 x=1 sin2x+cos2x=1 .
  • cos ⁡ 2 y = 2 cos ⁡ 2 y − 1 = 1 − 2 sin ⁡ 2 y \cos 2 y=2 \cos ^2 y-1=1-2 \sin ^2 y cos2y=2cos2y1=12sin2y sin ⁡ 2 x = 2 sin ⁡ x cos ⁡ x \sin 2 x=2 \sin x \cos x sin2x=2sinxcosx .
  • sec ⁡ 2 x = tan ⁡ 2 x + 1 \sec ^2 x=\tan ^2 x+1 sec2x=tan2x+1 csc ⁡ 4 x = cot ⁡ 2 x + 1 \csc ^4 x=\cot ^2 x+1 csc4x=cot2x+1 .
  • sin ⁡ ( x + y ) = sin ⁡ x cos ⁡ y + sin ⁡ y cos ⁡ x \sin (x+y)=\sin x \cos y+\sin y \cos x sin(x+y)=sinxcosy+sinycosx .
  • cos ⁡ ( x + y ) = cos ⁡ x cos ⁡ y − sin ⁡ x sin ⁡ y \cos (x+y)=\cos x \cos y-\sin x \sin y cos(x+y)=cosxcosysinxsiny .
  • sec ⁡ 2 d x \sec ^2dx sec2dx = d tan ⁡ x =d \tan x =dtanx csc ⁡ 2 x d = − d cot ⁡ x \csc ^2 x d=-d \cot x csc2xd=dcotx .
  • sin ⁡ x d x = − d cos ⁡ x \sin x d x=-d \cos x sinxdx=dcosx cos ⁡ x d x = d sin ⁡ x \cos x d x=d \sin x cosxdx=dsinx .
  • sec ⁡ x tan ⁡ x d = d sec ⁡ x \sec x \tan x d=d \sec x secxtanxd=dsecx sin ⁡ 2 x d x = d sin ⁡ 2 x = − d cos ⁡ 2 x \sin 2 x d x=d \sin ^2 x=-d \cos ^2 x sin2xdx=dsin2x=dcos2x .

02 基本积分法

(1) 三角凑微分
  • 常见的凑微分

    • sin ⁡ x d x = − d cos ⁡ x \displaystyle{ \sin x d x=-d \cos x } sinxdx=dcosx cos ⁡ x d x = d sin ⁡ x \displaystyle{ \cos x d x=d \sin x } cosxdx=dsinx

    • d x cos ⁡ 2 x = d tan ⁡ x \displaystyle{ \frac{d x}{\cos ^2 x}=d \tan x } cos2xdx=dtanx d x sin ⁡ 2 x = − d 1 tan ⁡ x \displaystyle{ \frac{d x}{\sin ^2 x}=-d \frac{1}{\tan x} } sin2xdx=dtanx1 .

  • 不常见的凑微分

    • ( cos ⁡ x − sin ⁡ x ) d x = d ( sin ⁡ x + cos ⁡ x ) \displaystyle{ (\cos x-\sin x) d x=d(\sin x+\cos x) } (cosxsinx)dx=d(sinx+cosx) .
    • sin ⁡ 2 x d x = d sin ⁡ 2 x \displaystyle{ \sin 2 x d x=d \sin ^2 x } sin2xdx=dsin2x − sin ⁡ 2 x d x = d cos ⁡ 2 x \displaystyle{ -\sin 2 x d x=d \cos ^2 x } sin2xdx=dcos2x .
(2) 三角换元
  • 三种常见的三角换元:画图辅助
  • 按照直角三角形的勾股定理构造变量
(3) 三角分部积分
  • 利用表格法求解

03 三角积分技巧

(1) 有理三角的幂次积分

① 正余弦偶次幂处理

  • sin ⁡ n x , cos ⁡ n x \sin^nx,\cos^nx sinnx,cosnx n n n 为偶数
  • 利用倍角降幂即可

② 正余弦奇次幂处理

  • sin ⁡ n x , cos ⁡ n x \sin^nx,\cos^nx sinnx,cosnx n n n 为奇数
  • d sin ⁡ x d\sin x dsinx d cos ⁡ x d\cos x dcosx .

③ 正余切幂次处理

  • sec ⁡ 3 x , tan ⁡ 3 x , cot ⁡ 3 x , csc ⁡ 3 x \sec ^3 x, \tan ^3 x, \cot ^3 x, \csc ^3 x sec3x,tan3x,cot3x,csc3x 的不定积分
  • 白银代换
    • 1 cos ⁡ 2 x = tan ⁡ 2 x + 1 \displaystyle{ \frac{1}{\cos ^2 x}=\tan ^2 x+1 } cos2x1=tan2x+1 1 sin ⁡ 2 x = 1 tan ⁡ 2 x + 1 \displaystyle{ \frac{1}{\sin ^2 x}=\frac{1}{\tan ^2 x}+1 } sin2x1=tan2x1+1 .
(2) 和差与积互化公式

① 适用范围

  • ∫ sin ⁡ m x ⋅ cos ⁡ n x \int \sin mx \cdot \cos nx sinmxcosnx ∫ sin ⁡ m x ⋅ sin ⁡ n x \int \sin mx \cdot \sin nx sinmxsinnx ∫ cos ⁡ m x ⋅ cos ⁡ n x \int \cos mx \cdot \cos nx cosmxcosnx .

② 分类讨论

1.当 m = n m=n m=n 时,倍角公式或降幂公式

2.当 m ≠ n m \neq n m=n 时,

  • sin ⁡ m x ⋅ cos ⁡ n x = 1 2 [ sin ⁡ ( m + n ) x + sin ⁡ ( m − n ) x ] \displaystyle{ \sin mx \cdot \cos nx = \frac12[\sin(m+n)x+\sin(m-n)x] } sinmxcosnx=21[sin(m+n)x+sin(mn)x]
    • sin ⁡ x ⋅ cos ⁡ x = 1 2 sin ⁡ 2 x = 1 2 [ sin ⁡ 2 x + sin ⁡ 0 x ] \displaystyle{ \sin x \cdot \cos x = \frac12\sin2x = \frac12[\sin2x+\sin0x] } sinxcosx=21sin2x=21[sin2x+sin0x]
  • sin ⁡ m x ⋅ sin ⁡ n x = 1 2 [ cos ⁡ ( m − n ) x − cos ⁡ ( m + n ) x ] \displaystyle{ \sin mx \cdot \sin nx = \frac12[\cos(m-n)x-\cos(m+n)x] } sinmxsinnx=21[cos(mn)xcos(m+n)x]
    • sin ⁡ x ⋅ sin ⁡ x = 1 − cos ⁡ 2 x 2 = 1 2 [ cos ⁡ 0 x − cos ⁡ 2 x ] \displaystyle{ \sin x \cdot \sin x = \frac{1-\cos 2x}{2} = \frac12[\cos0x-\cos2x] } sinxsinx=21cos2x=21[cos0xcos2x]
  • cos ⁡ m x ⋅ cos ⁡ n x = 1 2 [ cos ⁡ ( m + n ) x + cos ⁡ ( m − n ) x ] \displaystyle{ \cos mx \cdot \cos nx = \frac12[\cos(m+n)x+\cos(m-n)x] } cosmxcosnx=21[cos(m+n)x+cos(mn)x]
    • cos ⁡ x ⋅ cos ⁡ x = 1 + cos ⁡ 2 x 2 = 1 2 [ cos ⁡ 0 x + cos ⁡ 2 x ] \displaystyle{ \cos x \cdot \cos x = \frac{1+\cos 2x}{2} = \frac12[\cos0x+\cos2x] } cosxcosx=21+cos2x=21[cos0x+cos2x]
(3) ∫ R ( sin ⁡ x , cos ⁡ x ) d x \int R(\sin x,\cos x)dx R(sinx,cosx)dx
  • R ( − sin ⁡ x , cos ⁡ x ) = − R ( sin ⁡ x , cos ⁡ x ) R(-\sin x,\cos x)=-R(\sin x,\cos x) R(sinx,cosx)=R(sinx,cosx)
    • 整角代换:令  cos ⁡ x = t \cos x=t cosx=t .

    • R = ∫ d cos ⁡ x = − ∫ sin ⁡ x d x R=\int d\cos x=-\int\sin xdx R=dcosx=sinxdx .

    • sin ⁡ x \sin x sinx 换为 − sin ⁡ x -\sin x sinx R = − R R=-R R=R .

  • R ( sin ⁡ x , − cos ⁡ x ) = − R ( sin ⁡ x , cos ⁡ x ) R(\sin x,-\cos x)=-R(\sin x,\cos x) R(sinx,cosx)=R(sinx,cosx)
    • 整角代换: sin ⁡ x = t \sin x=t sinx=t .

    • R = ∫ d sin ⁡ x = ∫ cos ⁡ x d x R=\int d\sin x=\int\cos xdx R=dsinx=cosxdx .

    • cos ⁡ x \cos x cosx 换为 − cos ⁡ x -\cos x cosx R = − R R=-R R=R .

  • R ( − sin ⁡ x , − cos ⁡ x ) = R ( sin ⁡ x , cos ⁡ x ) R(-\sin x,-\cos x)=R(\sin x,\cos x) R(sinx,cosx)=R(sinx,cosx)
    • 整角代换: tan ⁡ x = t \tan x=t tanx=t .
    • R = ∫ d tan ⁡ x = ∫ cos ⁡ − 2 x d x R=\int d\tan x=\int\cos^{-2} xdx R=dtanx=cos2xdx .
    • sin ⁡ x \sin x sinx 换为 − sin ⁡ x -\sin x sinx,将 cos ⁡ x \cos x cosx 换为 − cos ⁡ x -\cos x cosx R = R R=R R=R .
(4) 万能代换
  • t = tan ⁡ x 2 ⇒ d x = 2 d t 1 + t 2   ,   x = 2 arctan ⁡ x \displaystyle{ t=\tan \frac{x}{2} \Rightarrow d x=\frac{2 d t}{1+t^{2}}\ , \ x=2\arctan x } t=tan2xdx=1+t22dt , x=2arctanx .
  • sin ⁡ x = 2 t 1 + t 2    ,    cos ⁡ x = 1 − t 2 1 + t 2 \displaystyle{ \sin x = \frac{2t}{1+t^2} \ \ , \ \ \cos x = \frac{1-t^2}{1+t^2} } sinx=1+t22t  ,  cosx=1+t21t2 .
(5) 典型类型
  • ∫ 1 a sin ⁡ x + b d x \displaystyle{ \int \frac{1}{a \sin x+b} d x } asinx+b1dx ∫ 1 a cos ⁡ x + b d x \displaystyle{ \int \frac{1}{a \cos x+b} d x } acosx+b1dx
    • 思路1:万能公式代换
    • 思路2:二倍角公式
  • ∫ 1 a sin ⁡ x + b cos ⁡ x + c d x \displaystyle{ \int \frac{1}{a \sin x+b \cos x+c} d x } asinx+bcosx+c1dx
    • 思路1:万能公式代换
    • 思路2:利用 a sin ⁡ x + b cos ⁡ x = A sin ⁡ ( x + α ) a \sin x+b \cos x=A\sin(x+\alpha) asinx+bcosx=Asin(x+α) 辅助角
  • ∫ 1 a sin ⁡ x + b cos ⁡ x d x \displaystyle{ \int \frac{1}{a \sin x+b \cos x} d x } asinx+bcosx1dx
    • 思路1:万能公式代换
    • 思路2:利用 a sin ⁡ x + b cos ⁡ x a \sin x+b \cos x asinx+bcosx 辅助角, ∫ 1 A sin ⁡ ( x + α ) d x \displaystyle{ \int \frac{1}{A\sin(x+\alpha)} d x } Asin(x+α)1dx 的积分
  • ∫ a sin ⁡ x + b cos ⁡ x c sin ⁡ x + d cos ⁡ x d x \displaystyle{ \int \frac{a \sin x+b \cos x}{c \sin x+d \cos x} d x} csinx+dcosxasinx+bcosxdx
    • 思路:直接凑分子,待定系数,求出 A , B A,B A,B 即可
    • a sin ⁡ x + b cos ⁡ x = A ( c sin ⁡ x + d cos ⁡ x ) + B ( c sin ⁡ x + d cos ⁡ x ) ′ a \sin x+b \cos x=A(c \sin x+d \cos x)+B(c \sin x+d \cos x)' asinx+bcosx=A(csinx+dcosx)+B(csinx+dcosx) .
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值