考研数学 第9讲 一元积分的概念

在这里插入图片描述

一.概念

1.原函数与不定积分(加C常数)

在这里插入图片描述
在这里插入图片描述

2.不定积分存在定理

在这里插入图片描述

祖孙三代关系

在这里插入图片描述

例1.8.1 证明原函数(不定积分)存在定理

在这里插入图片描述

积分的拆分

积分上下限可以拆分,如a,b,c,在a~c上的函数积分可以拆分为a-b的积分加上b到c的积分

函数积分导函数直接奇偶传递

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

例1.8.6 证明

在这里插入图片描述

例1.8.7(积分函数的周期性)

一个周期的积分不变,与其起点无关,保证首尾不变,中间可随意拆分
在这里插入图片描述

例1.8.8

在这里插入图片描述

一个函数可导它的导函数(不可突变)

在这里插入图片描述

(二)定积分

1.定积分的概念

在这里插入图片描述

积分的精确定义(曲边梯形面积推导)

在这里插入图片描述
在这里插入图片描述

考试时准确定义的一般形式 a=0,b=1(0-1上定积分)

在这里插入图片描述

例 1.8.23 (提出1/n,凑i/n的形式)

在这里插入图片描述

例1.8.24(凑i/n)

在这里插入图片描述
在这里插入图片描述

2.定积分存在定理

在这里插入图片描述
主要是1,3

3.定积分的性质

在这里插入图片描述

4.保号性

在这里插入图片描述
注意下方的等号一般是取不到的,除非上方是恒等式
在这里插入图片描述

5.估值定理

在这里插入图片描述

6.中值定理

在这里插入图片描述
在这里插入图片描述

三.变限积分(重点在于其求导公式)

在这里插入图片描述

四.反常积分

在这里插入图片描述
在这里插入图片描述

2.无穷区间上的反常积分

在这里插入图片描述
在这里插入图片描述

3.无界函数的反常积分

在这里插入图片描述
在这里插入图片描述

二.基本积分公式

在这里插入图片描述
在这里插入图片描述

四大积分法

在这里插入图片描述

1.凑微分法(第一类换元法)

在这里插入图片描述

2.换元法

在这里插入图片描述

三角函数代换

在这里插入图片描述

例1.8.12

在这里插入图片描述

其他代换方法

在这里插入图片描述

3.分部积分法

在这里插入图片描述

推导过程

在这里插入图片描述

在这里插入图片描述

口诀:反对幂指三(三指)

在这里插入图片描述
在这里插入图片描述

分部积分的推广

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

表格法
循环积分法

在这里插入图片描述
在这里插入图片描述

例1.8.17(换元+分部积分)

在这里插入图片描述

4.有理函数的积分(分解因式)

先对分母因式分解
根据因式阶数拆分(注意分解原则)
通分求A1-An(待定系数法)
在这里插入图片描述

例1.8.21

在这里插入图片描述

定积分的计算

在这里插入图片描述

1.定积分的换元法

在这里插入图片描述

2.定积分的分部积分法

在这里插入图片描述
在这里插入图片描述
注意有用的结论可直接简化

例 1.8.29 区间再现法(可独立于基本积分法使用适用于含三角函数的积分)

在这里插入图片描述

例1.8.32

在这里插入图片描述
在这里插入图片描述

例1.10.5(区间再现 令x=a+b-t)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

例1.8.33 华里士公式(计算高阶三角函数积分十分方便)–点火公式

在这里插入图片描述

例1.8.30

在这里插入图片描述

例1.8.33,1.8.34 点火公式推广

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值