文章目录
一.概念
1.原函数与不定积分(加C常数)
2.不定积分存在定理
祖孙三代关系
例1.8.1 证明原函数(不定积分)存在定理
积分的拆分
积分上下限可以拆分,如a,b,c,在a~c上的函数积分可以拆分为a-b的积分加上b到c的积分
函数积分导函数直接奇偶传递
例1.8.6 证明
例1.8.7(积分函数的周期性)
一个周期的积分不变,与其起点无关,保证首尾不变,中间可随意拆分
例1.8.8
一个函数可导它的导函数(不可突变)
(二)定积分
1.定积分的概念
积分的精确定义(曲边梯形面积推导)
考试时准确定义的一般形式 a=0,b=1(0-1上定积分)
例 1.8.23 (提出1/n,凑i/n的形式)
例1.8.24(凑i/n)
2.定积分存在定理
主要是1,3
3.定积分的性质
4.保号性
注意下方的等号一般是取不到的,除非上方是恒等式
5.估值定理
6.中值定理
三.变限积分(重点在于其求导公式)
四.反常积分
2.无穷区间上的反常积分
3.无界函数的反常积分
二.基本积分公式
四大积分法
1.凑微分法(第一类换元法)
2.换元法
三角函数代换
例1.8.12
其他代换方法
3.分部积分法
推导过程
口诀:反对幂指三(三指)
分部积分的推广
表格法
循环积分法
例1.8.17(换元+分部积分)
4.有理函数的积分(分解因式)
先对分母因式分解
根据因式阶数拆分(注意分解原则)
通分求A1-An(待定系数法)
例1.8.21
定积分的计算
1.定积分的换元法
2.定积分的分部积分法
注意有用的结论可直接简化
例 1.8.29 区间再现法(可独立于基本积分法使用适用于含三角函数的积分)
例1.8.32
例1.10.5(区间再现 令x=a+b-t)