快速入门numpy(一)

正文开始前的一些废话

好久没有写博客了,关于数据分析类的python库其实很久前就学习过,但是编程这种东西,不使用就很容易忘记,结束秋招已经有漫长一段时间了,选择了数据挖掘工程师这个岗位,需要学习的东西慢慢变多了,很多东西不熟悉是不行的,所以我想写一系列数据分析的博客,依旧是大坑,不定期更新。我想这一系列的东西还是从基本的编程开始比较合适,这里也推荐一本入门python数据分析的书籍,利用python进行数据分析(第二版),我有对应的中英文pdf,如果大家有兴趣,欢迎在本博文下面留言,直接留邮箱,我会给你发pdf,注意是第二版,第一版太老了,很多内容已经过时了。本博文基本就是根据这本书里面的逻辑编排的。不是严格意义上的照搬,里面穿插很多我的理(fei)解(hua)。下面开始正式的内容,你可以跳过这个小节。

整体导读

两个重点的内容,其一就是ndarray,这是numpy基本的对象,这一部分最重要的就是基本的切片索引;其二就是利用数组进行数据处理。numpy总的来说就是数组和数组的操作,当然一个成熟的函数库总是有各种各样的函数细节,这里我可能不能全部涉及,但本博文会根据我实际的使用不停地更新。
在这里插入图片描述
放一张思维导图,方便复习

一个叫ndarray的多维数组对象

说白了就多维数组,这个nd很形象,nd-array,numpy里面所有的函数不是为了创建这个对象就是为了操作这个对象。
ndarray是一个通用的同构数据多维容器,也就是说,其中的所有元素必须是相同类型的。 两个基本属性,shape和dtype,字面上的意思,维度和数据类型。

如何去创建ndarray

  • 使用array函数

在这里插入图片描述
这里array函数会自动判断数据类型
这里有完整的参数,大家有兴趣可以去查一下具体都代表着什么

array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)
  • 其他一些创建方法
    在这里插入图片描述
    这边还是有其他一些创建方式,用表列出来了,最常用的还是上面提到的。
    在这里插入图片描述

ndarray的数据类型
在这里插入图片描述
每次看到编程语言的数据类型,我都是看不下去的,只想跳过,可能是我还没有吃过数据类型的亏。但是numpy的dtype是它灵活交互其他系统的源泉之一。新生不需要太在意这些数据类型。下面的一些代码看懂就成。

在这里插入图片描述
在这里插入图片描述

到这里我们应该基本清楚ndarray是什么东西,怎么去创建它,恭喜你,到这里你差不多算是叩开numpy的大门了。下面该讲操作了。

numpy数组的运算
没错,不是重点,就是很基本的运算,加减乘除的那种
在这里插入图片描述

基本的索引和切片
一维数组的切片
在这里插入图片描述
跟数组最大的区别是,数组切片是原始数组的视图。数据不会被复制,视图上的任何修改都会直接反应到源数组上。
注意上面和下面的两个代码示例,记住numpy是需要特别的函数进行数组的复制的。
在这里插入图片描述
numpy是用来大数据处理的,复制来复制去会影响性能和内存。

高维数组的索引
这里就是和正常的编程语言里面的索引是一样的
在这里插入图片描述
看图就很清楚啦
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

python里面喜闻乐见的切片索引
学过python 的话,这边的切片索引就很好理解了。我们还是代码为主
在这里插入图片描述
在这里插入图片描述

对切片的赋值也是会扩散的
在这里插入图片描述

下面是两个重要的索引,算是重点
布尔型索引
在这里插入图片描述
在这里插入图片描述
下面的两个例子就能看出布尔索引的方便了
在这里插入图片描述

花式索引
主要是指利用整数数组进行索引
在这里插入图片描述

这边的代码有点意思,可能和你的理解有一些偏差
在这里插入图片描述

数组转置和轴对换
其实用到的不是很多
高维的转置比较费脑子
在这里插入图片描述
在这里插入图片描述

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值