基于人工神经网络(ANN)的非线性系统识别及MATLAB代码实现

91 篇文章 ¥59.90 ¥99.00
本文详细介绍了如何使用MATLAB进行非线性系统识别,涉及ANN的基本原理、识别过程,包括数据采集、预处理、神经网络建模和训练,以及模型验证和预测。并提供了一段示例代码展示如何创建和训练神经网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍

在工程和科学领域中,非线性系统的建模和识别是一个重要的问题。人工神经网络(Artificial Neural Network,ANN)是一种模拟人脑神经元网络的计算模型,已经被广泛应用于非线性系统的建模和识别任务中。本文将介绍如何使用MATLAB实现基于ANN的非线性系统识别,并提供相应的代码示例。

ANN的基本原理

人工神经网络由多个神经元组成,每个神经元都与其他神经元相连。ANN通过学习输入和输出之间的关系来建立模型。它由输入层、隐藏层和输出层组成。输入层接收原始数据,隐藏层通过一系列权重和偏差对输入进行处理,最终输出层给出系统的预测结果。

非线性系统识别过程

非线性系统识别的基本过程包括数据采集、数据预处理、神经网络建模和训练、模型验证和预测等步骤。

  1. 数据采集:收集系统输入和输出的数据样本。确保数据样本具有足够的多样性和代表性。

  2. 数据预处理:对采集到的数据进行预处理,包括数据清洗、去噪、标准化等。预处理的目的是为了提高神经网络的训练效果。

  3. 神经网络建模和训练:定义神经网络的结构和参数,并使用预处理后的数据进行训练。在MATLAB中,可以使用Neural Network Toolbox提供的函数来定义和训练神经网络。

下面是一个使用MATLAB进行非线性系统识别的示例代码:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值