#include <iostream>
#include <cstdio>
using namespace std;
const int MOD = 10000;
struct Matrix
{
int m[2][2];
};
Matrix Mul(Matrix a, Matrix b)
{
Matrix tmp;
for(int i=0; i<2; i++)
for(int j=0; j<2; j++)
{
tmp.m[i][j] = 0;
for(int k=0; k<2; k++)
tmp.m[i][j] = (tmp.m[i][j] + a.m[i][k] * b.m[k][j]) % MOD;
}
return tmp;
}
Matrix fast_mod(Matrix a, int m)
{
if(m == 1) return a;
Matrix tmp = fast_mod(a, m>>1);
tmp = Mul(tmp, tmp);
if(m & 1) return Mul(a, tmp);
else return tmp;
}
int main()
{
int n;
while(~scanf("%d", &n) && n != -1)
{
if(!n) {
cout<<0<<endl;
continue;
}
Matrix ans;
ans.m[0][0] = ans.m[0][1] = ans.m[1][0] = 1, ans.m[1][1] = 0;
ans = fast_mod(ans, n);
cout<<ans.m[0][1]<<endl;
}
return 0;
}
矩阵快速幂 poj 3070
最新推荐文章于 2019-09-04 21:50:01 发布
本文介绍了一种使用矩阵快速幂算法解决特定数学问题的方法。通过定义矩阵结构和两个关键函数:矩阵乘法(Mul)及快速幂(fast_mod),实现了对矩阵进行高效幂运算。主要应用于计算斐波那契数列等递推数列的大数值问题。
摘要由CSDN通过智能技术生成