- 该文档由Doc2X翻译提供解析与翻译, 想看更多论文翻译欢迎来Doc2X
- This document is provided with parsing and translation by Doc2X. For more translated papers, feel free to visit Doc2X.
- 原文链接 https://arxiv.org/pdf/2411.10053
That Chip Has Sailed: A Critique of Unfounded Skepticism Around AI for Chip Design
那片芯片已启航:对芯片设计领域AI无端怀疑的批判
Anna Goldie 1 , 3 {}^{1,3} 1,3 ,Azalia Mirhoseini 1 , 3 {}^{1,3} 1,3 ,and Jeff Dean 1 , 2 {}^{1,2} 1,2
Anna Goldie 1 , 3 {}^{1,3} 1,3 ,Azalia Mirhoseini 1 , 3 {}^{1,3} 1,3 ,和 Jeff Dean 1 , 2 {}^{1,2} 1,2
1 {}^{1} 1 Google DeepMind
1 {}^{1} 1 Google DeepMind
2 {}^{2} 2 Google Research
2 {}^{2} 2 Google Research
3 {}^{3} 3 Department of Computer Science,Stanford University
3 {}^{3} 3 斯坦福大学计算机科学系
Abstract
摘要
In 2020, we introduced a deep reinforcement learning method capable of generating superhuman chip layouts, which we then published in Nature and open-sourced on GitHub. AlphaChip has inspired an explosion of work on AI for chip design, and has been deployed in state-of-the-art chips across Alphabet and extended by external chipmakers. Even so, a non-peer-reviewed invited paper at ISPD 2023 questioned its performance claims, despite failing to run our method as described in Nature. For example, it did not pre-train the RL method (removing its ability to learn from prior experience), used substantially fewer compute resources (20x fewer RL experience collectors and half as many GPUs), did not train to convergence (standard practice in machine learning), and evaluated on test cases that are not representative of modern chips. Recently, Igor Markov published a “meta-analysis” of three papers: our peer-reviewed Nature paper, the non-peer-reviewed ISPD paper, and Markov’s own unpublished paper (though he does not disclose that he co-authored it). Although AlphaChip has already achieved widespread adoption and impact, we publish this response to ensure that no one is wrongly discouraged from innovating in this impactful area.
在2020年,我们介绍了一种深度强化学习方法,能够生成超越人类的芯片布局,随后我们在《自然》杂志上发表并开源到GitHub。AlphaChip激发了大量关于芯片设计AI的研究,并在Alphabet旗下的尖端芯片中得到部署,并得到了外部芯片制造商的扩展。即便如此,一篇在ISPD 2023上发表的非同行评审邀请论文质疑了其性能声明,尽管未能按照《自然》杂志中描述的方法运行我们的方法。例如,它没有对RL方法进行预训练(剥夺了其从先前经验中学习的能力),使用了显著更少的计算资源(RL经验收集器减少了20倍,GPU数量减半),没有训练到收敛(机器学习的标准做法),并在不具现代芯片代表性的测试案例上进行评估。最近,Igor Markov发表了对三篇论文的“元分析”:我们的同行评审《自然》论文,非同行评审的ISPD论文,以及Markov自己未发表的文章(尽管他没有披露自己是合著者)。尽管AlphaChip已经取得了广泛的采用和影响,我们发表这篇回应是为了确保没有人被错误地劝阻,从而不敢在这个有影响力的领域进行创新。
1 Introduction
1 引言
Following its publication in Nature, AlphaChip [30] has inspired an explosion of work on AI for chip design [41, 39, 43, 40, 10, 18, 5, 34, 8, 12, 17, 37, 7, 29]. It has also generated superhuman chip layouts used in three generations of TPU (see Figure 1), datacenter CPUs (Axion), and other chips across Alphabet, and been extended to new areas of chip design by external academics and chipma