拓扑--点集拓扑

集合论


(1)关系:集合A上的关系是笛卡尔积 AXA 的一个子集C

(2)等价关系:自反性、对称性、传递性

(3)全序关系:可比较性、非自反性、传递性

严格偏序关系:非自反性、传递性

(4)序型:A和B上分别有全序关系<_{A},\,<_{B},若A, B之间存在一个保持各自全序关系的一一映射,则称A和B序型相同

(5)上(下)确界性质:若全序集A的每一个有上(下)界的非空子集必有上(下)确界,则称A有上(下)确界性质。可以证明,A有上确界性质当且仅当它有下确界性质。实数集R满足确界性质,通常称为实数集的确界公理

(6)域:每个非零元都有逆元的交换幺环,记作 (F,+,\cdot)。即加法交换群+非零元乘法交换群+分配律(共9条公理)

(7)有序域:域 (F,+,\cdot) 有全序关系,并满足性质 若 x>y和z>0,则x+z>y+z;若x>y和z>0,则xz>yz

(8)线性连续统:集合A上的全序关系<具有上确界性质;并且若x<y,则存在一个元素z,使得x<z<y。则A称为线性连续统。

注意,这两个性质是实数中全序关系的两个主要性质,从它们可以导出R的许多拓扑性质

(9)归纳集:设J是一个良序集,J_{0} 是J的子集,如果对任意 \alpha \in J,都有 S_{\alpha} \subset J_{0} \Rightarrow \alpha \in J_{0},则称 J_{0} 为归纳集。特别地,对实数集的一个子集A,如果它包含数1,并且只要 x \in A 则必有 x+1 \in A,则A称为归纳集

(10)可数集:集合A与 Z_{+} 或 Z_{+} 的子集之间存在一个双射,则称A为可数集。若不存在这样的双射,则称为不可数集

(11)良序集:对具有全序关系<的集合A,如果A的任意非空子集有一个最小元,则称A为良序的。良序集必有上确界性质

(12)截:设X是一个全序集,给定 \alpha \in X,所有小于\alpha的元素的集合 S_{\alpha}=\left \{ x \,|\, x \in X, x<\alpha \right \} ,称为X在 \alpha 处的一个截

(13)笛卡尔积:A_{1} \times A_{2} \times ... \times A_{m}=\prod_{i=1}^{m}A_{i},每个元素是一个有穷m-串 (x_{1},...,x_{m}),其中 x_{i} \in A_{i} 。对同一个集合X上的笛卡积 X^{m},每个元素也可以看作一个函数 x: \left \{ 1,2,...,m \right \} \to X

加标集族的笛卡尔积:\prod_{i \in J} A_{i},其中J为指标集,对同一集合的笛卡尔积,可记作 A^{J}

\omega-串的集合:即指标集为整个正整数集的的笛卡尔积,记作 X^{\omega},每个元素是一个无穷\omega-串 (x_{1},x_{2}...),也可以看作一个函数 x: Z_+ \to X

m维欧氏空间:R^{m},它是实数的所有m-串的集合

无穷维欧氏空间:R^{\omega},它是实数的所有\omega-串 (x_{1},x_{2}...) 的集合,或者说是所有从正整数集的到实数集的函数构成的集合。它是R的可数无穷积空间

(14)有限特征:对集族\mathcal{A},集合B属于\mathcal{A}当且仅当B的每一个有限子集属于\mathcal{A},则称\mathcal{A}具有有限特征

 

主要定理:

(1)确界公理(确界原理):实数集R中有上(下)界的子集必有上(下)确界,即全序关系<具有上确界性质。记作sup S(inf S)

(2)良序性质:正整数集合 Z_{+} 的每一个非空子集具有一个最小元

(3)强归纳原理:设A是正整数构成的集合, S_{n} 是所有小于n的整数构成的集合,若对每一个正整数n,S_{n} \subset A 蕴涵 n \in A,则 A=Z_{+}

(4)阿基米德性质:对于任何实数x,存在自然数n有n>x。即正整数集 Z_{+} 在R中没有上界。该性质可以用确界公理来证明。实数的完备性蕴含了阿基米德性,但阿基米德性推不出实数的完备性,因为有理数满足阿基米德性,但并不是完备的

(5)有限集/无限集:A为有限集当且仅当不存在A与其真子集之间的一一映射;A为无限集当且仅当存在A与其真子集B之间的一一映射,当且仅当存在一个单射 f: Z_{+} \to A;有限集的子集基数必小于该有限集的基数;有限集的有限并及有限笛卡尔积都是有限集

(6)可数集的充要条件:B是可数集,等价于存在一个满射 f: Z_{+} \to B,等价于存在一个单射 g: B \to Z_{+}

(7)可数集的一些结论:可数集的子集是可数的;可数集的可数并是可数的;可数集的有限积是可数的;设 X=\left \{ 0,1 \right \} 是二元素集合,则以X中的元素构成的每个\omega-无穷序列作为元素的集合 X^{\omega} 不可数

(8)Schroeder-Bernstein定理:如果存在单射 f:A \to C 及 g: C \to A,则A与C具有相同的基数(势)

(9)最大势不存在:对集合A和幂集P(A),|A|< |P(A)| ,即不存在单射 f: P(a) \to A,也不存在满射 g: A \to P(A)。特别地,对自然数集N和实数集R,有 |N|<|P(N)|=|R|

(10)选择公理:给定由两两无交的非空集合构成的一个集族 \mathcal{A},存在一个集合C,使得C与\mathcal{A}中的每个元素恰好有一个公共元,即对于每一个 A \in \mathcal{A},集合 C \cap A 包含着唯一的一个元素。选择公理所述的那个存在的集合C,可以看成是从\mathcal{A}的每个集合 A 中选取一个元素而得到

(11)选择函数的存在性:给定非空集合的一个族 \mathcal{B} (未必是两两无交的),则存在一个函数

c: \mathcal{B} \to \bigcup_{B \in \mathcal{B}}B

使得对每一个B \in \mathcal{B},都有 c(B) \in B。函数c称为族\mathcal{B}的选择函数

(12)有限全序集具有与 Z_{+} 的一个截 \left \{ 1,...,n \right \} 相同的序型,因而必定的良序集

(13)Zermelo良序定理:任意集合A上都存在一个全序关系,使A成为良序集。良序定理与选择公理是等价的。推论:存在一个不可数的良序集

(14)超限归纳原理:若J是一个良序集,并且 J_{0} 是J的一个归纳子集(即对任意 \alpha \in J,都有 S_{\alpha} \subset J_{0} \Rightarrow \alpha \in J_{0} ),则 J_{0}=J

(15)Hausdorff极大原理:若<是集合A是一个严格偏序关系,则存在A中一个极大全序子集B。极大的意思就是说,对任何真包含B的集合C(B \subset C \subset A),C都不是关于 < 的全序集。极大原理与良序定理、选择公理都是等价的

(16)Zorn引理:设A是严格偏序集,若A的每个全序子集都有上界,则A中必有一个极大元。佐恩引理也与良序定理、选择公理等价。

(17)Kuratowski引理:设\mathcal{A}为一个集族,以真包含关系作为全序关系,若\mathcal{A}的每一个全序子集族\mathcal{B}的所有元素之并仍属于\mathcal{A},则\mathcal{A}中存在一个元素不真包含于\mathcal{A}的任何元素之中。它与良序定理等价

(18)Tukey引理:若集族\mathcal{A}是具有有限特征的,则\mathcal{A}中存在一个元素不真包含于\mathcal{A}的任何元素之中。它与良序定理等价

 

拓扑空间


(1)拓扑空间(拓扑结构):集合X上的一个子集族\tau,满足X, \varnothing 包含在\tau中(平凡性);\tau中的任意多成员并在\tau\bigcup \tau_{i} \in \tau(任意并);\tau中的有限多成员的交在\tau\bigcap_{i=1}^{n}\tau_{i} \in \tau(有限交),则称子集族\tau是X的一个拓扑,X和\tau一起称为X的拓扑空间,记作(X, \tau)。\tau中的元素称为开集

离散拓扑:2^{X}

余有限拓扑:\tau=\left \{ A \subset X\,|\, A = \varnothing \, or \, X-A \, is \, finite \right \}

余可数拓扑:\tau=\left \{ A \subset X\,|\, A = \varnothing \, or \, X-A \, is \, countable \right \}

(2)拓扑的基:X的子集族\mathcal{B}满足对每个元素 x \in X,至少存在一个包含x的基元素 B \in \mathcal{B};若x属于两个元素的交 x \in B_{1} \cap B_{2},则存在包含x的一个元素 B_{3} \in \mathcal{B} 满足 B_{3} \subset B_{1} \cap B_{2},则这个族\mathcal{B}称为X的某拓扑的一个基

X的所有单点子集的族是X的离散拓扑的基

实数标准拓扑:实数轴上所有开区间的族作为基生成的拓扑,默认的R就是指标准拓扑

实数下限拓扑:实数轴上所有左闭右开区间的族作为基生成的拓扑空间,记作 R_{l},称为Sorgenfrey直线。类似地有上限拓扑。积空间 R_{l} \times R_{l} 称为Sorgenfrey平面

实数K-拓扑:设 K=\left \{ \frac{1}{n}\,|\,n \in Z_{+} \right \},由所有开区间 (a,b) 和形如 (a,b)-K 的集合的族,作为基生成的拓扑,称为R上的K-拓扑,记作 R_{K}

(3)拓扑的子基:设 (X, \tau) 为拓扑空间,S \subset \tau,若S的元素的所有有限交的族为 \tau 的基,则称S为拓扑空间 (X, \tau) 的子基

(4)序拓扑:设X有全序关系,并且多于一个元素。则X的所有开区间(a,b),所有满足a_{0}为X最小元(如果存在的话)的区间 [a_{0},b),所有满足b_{0}为X最大元(如果存在的话)的区间 (a, b_{0}] 组成的族,是X的某一个拓扑的基,这个拓扑称为序拓扑。注意X可能没有最小元或最大元,所以可能会有一些序拓扑不含其中的某几类,这是允许的

标准拓扑恰好就是在 R 上定义常用序关系给出的序拓扑。Z_{+} 的序拓扑是离散拓扑

(5)积拓扑:定义 X \times Y 的积拓扑为所有诸如 U \times V (U为X的一开子集,V为Y的一开子集)形式的集族 \mathcal{B} 生成的拓扑

(6)投影:若映射 \pi_{1}: X \times Y \to X, \, \pi_{2}: X \times Y \to Y 满足 \pi_{1}(x,y)=x, \, \pi_{2}(x,y)=y,则这两个映射分别定义为笛卡尔积到第一、二分量上的投影

(7)子空间拓扑:设X是一个赋有拓扑 \tau 的拓扑空间。如果 Y \subset X ,则  \tau_{Y}=\left \{ Y \cap U \,|\, U \in \tau \right \}是一个拓扑,定义为子空间拓扑,并且把赋有这个拓扑的Y称为X的子空间。在此时,Y的开集由X的开集与Y的交组成

(8)凸集:设Y是全序集X的子集,如果对Y中任意一对点 a<b,都有 (a,b) \subset Y,则称Y是X中的一个凸集

(9)闭集:A的补集X-A是开集,则定义A为闭集

闭包:包含着A的所有闭集的交,称为A的闭包,记作 \bar{A}。显然闭包一定是闭集

内点:存在开集U,使得 x \in U \subset A,则称x为A的内点,所有内点的集合称为A的内部(开核),记作 A^{o},它等价于A的所有开子集的并,也即A的最大开子集

(10)极限点(聚点):点x的任意一个邻域与A的交有异于x的点,称x为A的一个极限点或聚点。注意x可以在A中,也可以不在A中。A的所有聚点的集合称为A的导集,记作 {A}'

孤立点:A中的非聚点称为A的一个孤立点。即存在一个邻域,其中不含A中除x的其他点

(11)连续映射(连续函数):设X, Y都是拓扑空间,对映射 f: X \to Y,如果值域Y中的每个开子集V,其原像 f^{-1}(V) 在X中也是开子集,则 f 称为连续的映射

(12)同胚:设X, Y都是拓扑空间,函数 f: X \to Y 是一个双射,如果f和它的反函数都是连续的,则称f为一个同胚,记作 X \simeq Y

不是同胚的连续双射例子:

映射 f: [0,1) \to S^{1}=\left \{ (x,y) \,|\, x^{2}+y^{2}=1 \right \} 定义为 f(t)=(cos2\pi t, sin2\pi t),即区间 [0,1)到单位圆周的映射,它是一个连续的双射,但 f^{-1} 不连续

(13)拓扑不变量(拓扑性质):由集合X的拓扑所得出的X的性质,如果能为所有的同胚映射所共有,即在同胚映射下这种性质仍然能保持,则称它是拓扑性质,也称为拓扑不变量。可见同胚是保持拓扑性质的一一映射。

常见的拓扑不变量:开集性、紧致性、连通性、可度量性

(14)拓扑嵌入:设X, Y是拓扑空间, f: X \to Y 是一个连续的单射,那么限制f的值域得到的映射 {f}': X \to f(X) 是一一映射,若 {f}' 正好是一个同胚,则称 f: X \to Y 是一个X到Y的拓扑嵌入,f也称为嵌入映射

(15)度量:d: X^{2} \to R,满足正定性、自反性、三角不等式

标准有界度量:\bar{d}(x,y)=min \left \{ d(x,y), 1 \right \} ,称为相应于d的标准有界度量

R^{n} 中的欧氏度量:d(x,y)=\left \| x-y \right \|=\sqrt{(x_{1}-y_{1})^{2}+...+(x_{n}-y_{n})^{2}}

R^{n} 中的平方度量:\rho(x,y)=max\left \{ \left | x_{1}-y_{1} \right |,...,\left | x_{n}-y_{n} \right | \right \}

一致度量:设(Y,d)是度量空间,\bar{d}(a,b)=min \left \{ d(a,b), 1 \right \} 是Y上关于d的标准有界度量,给定指标集J,定义 Y^{J} 上的度量 \bar{\rho}(x,y)=sup\left \{ \bar{d}(x_{\alpha},y_{\alpha}) \,|\, \alpha \in J \right \} ,它称为 Y^{J} 上关于d的一致度量,对应的拓扑称为一致拓扑

(16)度量拓扑/度量空间:设d是X的一个度量,则全体\epsilon-球 B(x,\epsilon),其中 x \in X, \epsilon >0 是X的某个拓扑的基,这个拓扑称为X的度量拓扑,(X, d)也称为度量空间

(17)有界集:设A是度量空间(X, d)的一个子集,若存在一个数M,便利对于A中任意两点 a_{1} 和 a_{2} 有 d(a_{1}, a_{2}) \leq M,则称A是有界的

(18)商映射:设X, Y为拓扑空间,若 f: X \to Y 是连续的满射,并且U是Y的开子集当且仅当 f^{-1}(U) 是X的开子集,则称 f 是一个商映射

(19)商拓扑/商空间:设 (X, \tau) 是拓扑空间,\sim 是X上的一个等价关系,所有等价类的集合是X的一个分拆,记作 X/\sim,称为X关于\sim的商集。把X上的点映射到它所在的等价类,得到的映射 p: X \to X/\sim 称为称为粘合映射,它是一个商映射。商集上的子集族 \tilde{\tau}=\left \{ V \subset X/\sim \,|\, p^{-1}(V) \in \tau \right \} 就是 X/\sim 的一个拓扑,称为X关于\sim的商拓扑,(X/\sim, \tilde{\tau}) 称为商空间。注意这个拓扑也是使p连续的最大拓扑

直观上,商空间表明原来空间上属于同一个等价类的所有点(一个点集),在新的空间上都被粘合收缩为一个点(用一个等价类表示),因此商空间 X/\sim 也常称为X的粘合空间,或分解空间

 

主要定理:
(1)拓扑基的充要条件:对拓扑空间X上的任意开集U,对任意 x \in U 都存在B满足 x \in B \subset U,所有满足条件的B组成的族就是拓扑的基\mathcal{B}。这等价于\mathcal{B} 的成员是开集且X的每个开子集都是 \mathcal{B} 中一些成员的并

(2)下限拓扑 R_{l} 和K-拓扑 R_{K} 都严格细于标准拓扑,但它们之间不可比较,即互不包含

(3)积拓扑的基:设 \mathcal{B}, \mathcal{C} 分别是拓扑空间X, Y的基,则 \mathcal{D}=\left \{ B \times C \,|\, B \in \mathcal{B}, C \in \mathcal{C} \right \} 是拓扑空间 X \times Y 的基。另外族 \mathcal{S}=\left \{ \pi_{1}^{-1}(U) \,|\, U \, open \, in \, X \right \} \cup \left \{ \pi_{2}^{-1}(V) \,|\, V \, open \, in \, Y \right \} 是 X \times Y 的积拓扑的子基

(4)子空间拓扑的基:若 \mathcal{B} 是X上的拓扑的基,那么 \mathcal{B}_{Y}=\left \{ B \cap Y \,|\, B \in \mathcal{B} \right \} 是Y上子空间拓扑的基

若A是X的子空间,B是Y的子空间,那么 A \times B 的积拓扑即为 A \times B 在 X \times Y 上的子空间拓扑

(5)凸集的拓扑空间:设X是有序拓扑的全序集,  Y是X中的凸集,那么Y的序拓扑与Y在X上的子空间拓扑相同

(6)闭包的充要条件1:设A为拓扑空间X的子集,则 x \in \bar{A} 当且仅当每个x的邻域(即包含x的开集)与A的交集非空。若X的拓扑由一组基生成,则 x \in \bar{A} 当且仅当每一个包含x的基元与A的交集非空

(7)闭包的充要条件2:A的闭包等于A与其所有极限点的并,即 \bar{A}=A \cup {A}'

拓扑空间中的子集为闭集当且仅当A=\bar{A},即它包含其所有的极限点

(8)内点的性质:

A \subset B \Rightarrow A^{o} \subset B^{o}

A^{o} 就是A的所有开子集的并(也即A的最大开子集);

A是开集等价于 A=A^{o}

(A \cap B)^{o}=A^{o} \cap B^{o}

(A \cup B)^{o} \supset A^{o} \cup B^{o}

(8)Hausdorff空间的性质:一个序列最多收敛到一个点;任何有限子集都是闭集;具有序拓扑的全序集一定是Hausdorff空间;两个Hausdorff空间的积也是Hausdorff空间;Hausdorff空间的子空间也是Hausdorff空间

(9)函数 f: X \to Y 连续的充要条件:等价于对X的每个子集A,有 f(\bar{A})=\overline{f(A)} 。等价于对Y中的每个闭集B,f^{-1}(B) 在X中也是闭集。等价于对每一个元素 x \in X 和每一个f(x)的邻域V,存在x的一个邻域U使得 f(U) \subset V

(10)粘合引理:设 X=A \cup B,A和B都是X中的闭集(或者都是开集也行),f: A \to Y, \, g: B \to Y 都是连续映射,并且在定义域的重合处即A \cap B 上恒有 f(x)=g(x),则 f 和 g 可以组成一个新的连续映射 h: X \to Y,定义为

h(x)=\left\{\begin{matrix} f(x), & x \in A \\ g(x), & x \in B \end{matrix}\right.

注意粘合引理必须要求两个连续映射在定义域的重合处相等,并且定义域被限制为都是闭集(或都是开集),这两个条件缺一不可,这样它们就可以在重合处粘合起来,并保持拓扑的连续性质不变

粘合定理的一般化形式:设 \left \{ A_{1},...,A_{n} \right \} 为X的一个有限闭覆盖,如果映射 f: X \to Y 在每一个 A_{i} 上的限制都连续,那么 f 为连续映射

(11)到积空间的连续映射:设 f: A \to X \times Y,且 f(a)=(f_{1}(a), f_{2}(a)),则 f 连续的充分必要条件是 f_{1}: A \to X, \, f_{2}: A \to Y都连续

(12)度量拓扑:由欧氏度量d或平方度量 \rho 诱导的R^{n}的拓扑与R^{n}的积拓扑相同。 R^{J} 上的一致拓扑细于积拓扑,粗于箱拓扑,并且当J为无限集时,这三个拓扑两两不同

(13)R^{\omega} 的度量:无穷维欧氏空间 R^{\omega} 是可度量化的。设 \bar{d}=min \left \{ d(a,b), 1 \right \} 是R的标准有界度量,对 R^{\omega} 上的两个点x, y,定义

D(x,y)=sup\left \{ \frac{\bar{d}(x_{i},y_{i})}{i} \right \}

则D是 R^{\omega} 的积拓扑的一个度量。

(14)序列引理:设X是一个拓扑空间,A \subset X,若A中有一个收敛于x的序列,则 x \in \bar{A}。若X为度量空间,则逆命题也成立,即在度量空间中 x \in \bar{A} 等价于A中有一个收敛于x的序列

(15)一致极限定理:设 f_{n}: X \to Y 是从拓扑空间X到度量空间Y中一个连续函数序列,若 \left \{ f_{n} \right \} 一致收敛于f,则 f 连续

一致收敛的定义:对任意 \epsilon >0,存在整数N,对 n>N 以及任意 x \in X,都有 d(f_{n}(x), f(x))<\epsilon

(16)商映射的性质:若 f: X \to Y 是商映射,那么 X/\sim 同胚于Y。可见Y是商空间,进一步若 g: Y \to Z 是从商空间Y发出的映射,那么 g 连续当且仅当 g \circ f 连续

连续的满射 f: X \to Y 若还是开映射或闭映射,则它是商映射;

若X紧致,Y是Hausdorff空间,则连续的满射 f: X \to Y 一定是商映射;

商映射的复合也是商映射。

 

连通性与紧致性


(1)连通空间:拓扑空间X如果不能分为两个非空不相交开集的并,则称它连通

(2)道路连通:X中从点x和点y的一条道路,是指从实直线的某一闭区间 [a, b]到X的一个连续映射 f: [a,b] \to X,使得 f(a)=x且f(b)=y。如果空间X中任意两点都能用X中的一条道路连接,则称X是道路连通的

(3)拓扑学家的正弦曲线:S=A \cup B,其中 A=\left \{ (x, sin \frac{1}{x}) \,|\, x \in (0,1) \right \}, \, B=\left \{ (0, y) \,|\, y \in [-1,1] \right \} 。它是连通的,但不是道路连通的,也不是局部连通的

(4)长直线(Alexandroff直线):L=\left \{ (x, y) \,|\, x \in S_{\Omega}, \, y \in [0,1) \right \} - \left \{ (a_{0},0) \right \},其中 S_{\Omega} 为极小不可数良序集,a_{0} 为 S_{\Omega} 中的最小元。即L是由具有字典序的全序集 S_{\Omega} \times [0,1) 中去掉最小元后所得的集合,直观上它是不可数多个[0,1)线段的首尾“粘合”

长直线是道路连通的,并且局部同胚于R,但它不能嵌入到任何的欧氏空间 R^{n} \, (n\geq 1)

(5)连通分支:拓扑空间X的一个子集如果连通,并且不是X其余连通子集的真子集,则称它为X的连通分支。这个定义说明连通分支为极大连通子集。

也可以用等价类来定义:若X中存在包含x和y的连通子空间,则规定 x \sim y,每一个等价类称为X的一个连通分支。类似地也可以定义道路连通分支

(6)局部连通:对x的每一个邻域U,都存在一个连通邻域V \subset U,则称x处是局部连通的。若空间X在每一点处都是局部连通的,则称X是局部连通的。类似地可以定义道路局部连通

(7)紧致性:对拓扑空间X,如果X的每一个开覆盖都有有限子覆盖,则称X是紧致的

列紧性:如果X中的每一个序列都有收敛的子序列(即有聚点),则称X是列紧的。在度量空间中,列紧性与紧致性是等价的

(8)一致连续:设 f 是从度量空间 (X, d_{X}) 到度量空间 (Y, d_{Y}) 的一个函数,若对任意 \epsilon >0,存在 \delta >0 使得对于X中的任意两点 x_{0}, x_{1},都有

d_{X}(x_{0}, x_{1})<\delta \Rightarrow d_{Y}(f(x_{0}), f(x_{1}))<\epsilon

则称函数f是一致连续的

(9)局部紧致:若存在X的一个紧致子空间C包含着x的一个邻域,则称在x处是局部紧致的。如果X在每一点处都是局部紧致的,则称X是局部紧致的

(10)紧致化/单点紧致化:若Y是一个紧致的Hausdorff空间,X是Y的真子空间并且其闭包等于Y,则Y称为X的一个紧致化。若Y-X是单点集,则Y称为X的单点紧致化,它是X的极小紧致化,因为它只增加了一个点

两个紧致化等价:两个紧致化 Y_{1} 和 Y_{2} 是等价的,若存在一个同胚 h: Y_{1} \to Y_{2},使得对每个 x \in X 都有 h(x)=x

(11)有向集:设 (D,\leq) 是偏序集,若对任意 x,y \in D,存在 z \in D 满足 z\geq x, z\geq y,则称D是一个有向集。显然 Z_{+} 是有向集

网:有向集D到X的一个映射 S: D \to X ,称为X中的网,网S也记作 \left \{ x_{i} \right \}_{i \in D} 。当 D=Z_{+} 时就通常说的序列

子网:对X中的网 S=\left \{ x_{i} \right \}_{i \in D} 和  T=\left \{ y_{i} \right \}_{i \in E} ,若存在映射 \phi:E \to D 使得 T=S\circ \phi ,且对任意 i_{0} \in D,存在 j_{0} \in E,当 j \geq j_{0} 时有 \phi(j)\geq i_{0},则称T为S的子网

(12)网的极限:对X中的网 \left \{ x_{i} \right \}_{i \in D} ,如果存在点 x \in X,满足对x的每个邻域U,存在 N \in D,使得 i\geq N 蕴含 x_{i} \in U,则称x是 \left \{ x_{i} \right \}_{i \in D} 的一个极限点,或称 \left \{ x_{i} \right \}_{i \in D} 收敛于x,记作 \left \{ x_{i} \right \}_{i \in D} \to x。网S的所有极限点记作 limS。若limS非空,则称S在X中收敛。序列收敛就是网收敛的特殊情形

(13)滤子:设 \mathcal{F} 是X的非空子集族,满足三条公理 \forall F \in \mathcal{F}, F\neq \varnothing ;若 F_{1},F_{2} \in \mathcal{F},则 F_{1} \cap F_{2} \in \mathcal{F} ;若 F \in \mathcal{F}, F \subset G \subset X,则 G \in \mathcal{F} ;那么称 \mathcal{F} 为X的一个滤子。滤子的理论也是研究极限理论的一种工具,它和网的理论是等价的

(14)滤子基:设 \mathcal{B} 是X的非空子集族,若满足 \forall B \in \mathcal{B}, B \neq \varnothing ;若 B_{1}, B_{2} \in \mathcal{B},则存在 B_{3} \in \mathcal{B} 使得 B_{3} \subset B_{1} \cap B_{2} ;那么称 \mathcal{B} 为X的一个滤子基

(15)滤子的极限:设 \mathcal{F} 是拓扑空间X的一个滤子,如果存在点 x \in X,满足对x的每个邻域U,都存在 F \in \mathcal{F} 使得 F \subseteq U,则x称为滤子 \mathcal{F} 的极限点,或称 \mathcal{F} 在X中收敛于x,记作 \mathcal{F} \to x。滤子 \mathcal{F} 的所有极限点集合记作 lim \mathcal{F}

聚集点:如果存在点 x \in X,满足对x的每个邻域U,和 \mathcal{F} 中的每个元素 F,都有 U \cap F \neq \varnothing,这时 x 称为 \mathcal{F} 的聚集点,所有聚集点的集合记作 adh \mathcal{F}。注意极限点必然是聚集点,但聚集点不一定是极限点

 

主要定理:

(1)连通空间的性质:

连通空间在连续映射下的像连通;

若X的连通子空间族的交有一个公共点,则它们的并也是连通的;

若X有一个连通的稠密子集,则X连通;

若A是X的连通子集,A \subset B \subset \bar{A} ,那么B也连通;

连通性可乘,即有限个连通空间的笛卡尔积也是连通的

(2)线性连续统的连通性:具有序拓扑的线性连续统L是连通的,并且L的每一个区间或单向无界区间都是连通的。特别地,实直线R是连通的,R中的每一个区间是连通的

(3)介值定理:从连通空间X到序拓扑空间Y的连续映射 f ,可以取到给定两点 f(a) 和 f(b) 之间的一切值。即对f(a)和f(b)之间的任意一点r,在X中都存在点c使得 f(c)=r

(4)连通分支的性质:每个连通子集必包含在唯一的一个连通分支中。连通分支一定是闭集。局部连通空间的连通分支是开集,也就是说其实它是既开又闭的

(5)紧致空间的判定1:紧致空间的每一个闭子集都是紧致的;Hausdorff空间的每一个紧致子空间都是闭的;紧致空间在连续映射下的像是紧致的;有限个紧致空间的积是紧致的;紧致空间的有限并是紧致的

(6)紧致空间的判定2:若序拓扑X具有上确界性质,则X中的每一个闭区间都紧致的。特别地,实直线R中的任一闭区间都是紧致的

(7)管状引理:对Y是紧致的积空间 X \times Y,若N是包含薄片 x_{0} \times Y 的一个开集,则X中存在 x_{0} 的一个邻域W,使得N包含着集合 W \times Y。集合 W \times Y 称为 x_{0} \times Y 的一个管子

(8)Bolzano-Weierstrass定理(聚点定理):有限维实向量空间 R^{n} 中的一个子集E是列紧的(每个序列都有收敛子序列,即有聚点),当且仅当它是有界闭集。因为有限维赋范向量空间与 R^{n} 同胚,因此在有限维赋范向量空间中也成立

(9)Heine–Borel定理(有限覆盖定理):R^{n} 中的子集E为紧集等价于E为有界闭集。可推广到一般度量空间,即度量空间的子集是紧集,当且仅当它是完备的并且完全有界的

(10)用紧致性来判定同胚:对连续的双射 f: X \to Y,若X是紧致的,Y是Hausdorff空间,则 f 是一个同胚

(11)极值定理:若 f: X \to Y 是连续映射,X是紧致的,Y是有序拓扑的全序集,则在X中存在点c和d,使得得对所有的 x \in X,都有 f(c)\leq f(x)\leq f(d)

(12)Lebesgue数引理:设 \mathcal{A} 为度量空间 (X, d) 的一个开覆盖,若X是紧致集,则存在 \delta >0 使得X的每一个直径小于 \delta 的子集包含在 \mathcal{A} 的某一元素中。数 \delta 称为开覆盖 \mathcal{A} 的一个Lebesgue数

(13)一致连续性定理:f: X \to Y 是从紧致度量空间 (X, d_{X}) 到度量空间 (Y, d_{Y}) 的一个连续映射,则 f 是一致连续的

(14)不可数的判定:设X是非空的紧致的Hausdorff空间,若X中没有孤立点,则X是不可数的。

推论:R中的每一个闭区间都是不可数的

(15)Cantor集:从区间 [0,1]开始,不断在每个区间中去掉中间的三分之一,把这个过程一直进行下去,最后剩下的点所组成的集合就叫作Cantor集,注意每次去掉的都是开区间。下面是递归定义

A_{0}=[0,1]

A_{n}=A_{n-1}-\bigcup_{k=0}^{\infty}\left ( \frac{1+3k}{3^{n}}, \frac{2+3k}{3^{n}} \right )

它们的交就是Cantor集

C=\bigcap_{n \in Z_{+}}A_{n}

Cantor集的性质:

Cantor集的Lebesgue测度为0;

Cantor集是非空有界闭集;

Cantor集是完全集(没有孤立点的闭集);

Cantor集是无处稠密集(疏朗集),即对任何一个开子集(a,b),都存在包含于(a,b)的开子集不含Cantor集中的点;

Cantor集是完全不连通的;

Cantor集是紧致集;

Cantor集是不可数集。

(16)空间的紧致化:X是局部紧致的Hausdorff空间的充要条件是存在一个对X的单点紧致化空间Y,即X是Y的子空间,Y-X是单点集,并且Y是紧致的Hausdorff空间。

可见,任何一个局部紧致的Hausdorff空间都可以嵌入到某一个叫做单点紧致化的紧致Hausdorff空间中

(17)用网来研究拓扑空间:

积空间:若在X和Y中分别有 \left \{ x_{i} \right \}_{i \in D} \to x 和 \left \{ y_{j} \right \}_{j \in E} \to y ,则在 X \times Y 中有 \left \{ x_{i} \right \}_{i \in D} \times \left \{ y_{j} \right \}_{j \in E} \to x \times y ;

闭包的条件:设 A\subset X,则 x \in \bar{A} 当且仅当存在A中点的一个网收敛于x;

Hausdorff性:若X是Hausdorff空间,则X中的一个网最多收敛于一个点;

连续性:函数 f: X \to Y 是连续的,当且仅当对X中任何收敛于x的网 \left \{ x_{i} \right \}_{i \in D},都有网 f(\left \{ x_{i} \right \}_{i \in D}) 收敛于f(x);

紧致性:X是紧致的当且仅当X的每一个网都有一个收敛的子网。

(18)用滤子来研究拓扑空间:

如果 \mathcal{F} 是拓扑空间X的一个滤子,N(x)是点x所有邻域构成的族,则x \in lim \mathcal{F} \Leftrightarrow N(x) \subset \mathcal{F} ;

Hausdorff性:若X是Hausdorff空间,则X中的滤子\mathcal{F}最多收敛于一个点,即如果 \mathcal{F} 收敛,则 adh \mathcal{F} 是单点集,且有 adh \mathcal{F}=lim \mathcal{F}

紧致性:X是紧致的,当且仅当X上的任一滤子基都有聚集点即 adh \mathcal{F} \neq \varnothing;当且仅当X上的所有滤子基都是收敛滤子基的子集;

与网的等价性:如果 \mathcal{F} 是拓扑空间X的一个滤子,则存在X中的一个网 f,满足 adh \mathcal{F}=adh f, \, lim \mathcal{F}=lim f。反过来若f是X中的一个网,则存在X中的一个滤子 \mathcal{F},满足 adh \mathcal{F}=adh f, \, lim \mathcal{F}=lim f

 

可数公理和分离公理


(1)邻域基:设 \mathcal{U} 是点x的一个邻域族,若x的每一个邻域都至少包含 \mathcal{U} 的一个成员,则称 \mathcal{U} 为x的一个邻域基

(2)稠密集:对空间X的子集A,如果 \bar{A}=X,则称A在X是稠密的。等价的说法是X的每一个邻域都含有A中的点

(3)函数分离:对拓扑空间X的两个子集A和B,若存在一个连续函数 f: X \to [0,1],使得 f(A)=0, f(B)=1,则称A和B能用连续函数分离

(4)函数完全分离:若存在一个连续函数 f: X \to [0,1],使得 f^{-1}(0)=A, f^{-1}(1)=B,则称A和B能用连续函数完全分离

(5)可数公理:

C1公理:任一点都有可数邻域基

Lindelof空间:空间的每一个开覆盖都包含可数的子覆盖。这个条件比C2公理弱。若把可数改为有限,则就是紧致空间

可分空间:空间中有可数的稠密子集。这个条件也比C2公理弱

C2公理:X有可数拓扑基。它蕴涵C1公理

(6)分离公理:

T0公理:空间中任意两点拓扑可区分,即一点存在邻域不包含另一点。T0空间也称为Kolmogorov空间

T1公理:空间中任意两点都是可分离的,即各有一个邻域不含另一点。T1空间也称为Frechet空间

T2公理:拓扑空间X的任意两点都是邻域可分离的,即有不相交的邻域,T2空间也称为Hausdorff空间

T2.5公理:任意两点都是闭邻域可分离的,即有不相交的闭邻域,该空间也称为Urysohn空间

正则公理(Regular):任意一点与不含该点的任一闭集都是邻域可分离的,即有不相交的邻域,该空间称为正则空间

T3公理:正则Hausdorff空间,即点之间、点与闭集之间都是邻域可分离的

完全正则公理:任意一点x和不含x的闭集A都是函数可分离的,即存在一个连续映射 f: X \to [0,1] 使得 f(x)=0,  f(A)=1

T3.5公理(完全T3):完全正则Hausdorff空间,也称为Tychonoff空间

正规公理(Normal):任意两个不相交的闭集都是邻域可分离的,即有不相交的邻域,该空间称为正规空间

T4公理:正规Hausdorff空间,即点之间、闭集之间都是邻域可分离的

完全正规公理:任意两个相区别的子集都是邻域上可分离的,这等价于每一个子空间都是正规空间

T5公理(完全T4):完全正规的Hausdorff空间

完美正规公理:任意两个相区别的闭子集都是函数上完全分离的

T6公理(完美T4):完美正规的Hausdorff空间

注意在T1公理成立的情况下,T4公理可以推出T3公理,T3公理可以推出T2公理。另外,这里T3、T4、T5、T6公理是在加了Hausdorff条件后单独列出来的,这是Bourbaki的定义。很多书上为了讨论的简化,不用加Hausdorff条件,把T3空间、T3.5空间、T4空间、T5空间、T6空间等价地定义为上述正则空间、完全正则空间、正规空间、完全正规空间、完美正规空间

(7)二进分数(二进有理数):所有分母为2的幂的分数,即 \frac{a}{2^{b}} 的形式,a为正数,b为自然数。二进分数的一个经典应用是用来证明Urysohn引理

(8)拓扑流形:定义为具有可数基的Hausdorff空间,它的每一点x有一个邻域同胚于 R^{m} 中一个开子集。也称为m-维流形

(9)映射的支撑集:定义在X上映射 f: X \to R,它的支撑集定义为使f取非零值的点集的闭包,记为 supp(f)=\overline{\left \{ z \in X:f(z) \neq0\right \}}

(10)单位分拆:对空间X的一个有限开覆盖 \left \{ U_{1},...,U_{n} \right \},连续函数序列 \phi _{i}: X \to [0,1], \, i=1,...,n 如果满足,对每一个 i 有 supp(\phi_{i}) \subset U_{i},对每一个x有 \sum_{i=1}^{n}\phi_{i}(x)=1,则该函数序列称为则 \left \{ U_{i} \right \} 控制的一个单位分拆

(11)逐点有限加标族:X的子集的一个加标族 \left \{ A_{\alpha} \right \},如果对每一个 x \in X,仅仅对于有限多个 \alpha 有 x \in A_{\alpha},则称该子集族为逐点有限的加标族

 

主要定理:

(1)可数公理性质:

若X在x处有可数邻域基,则存在一个可数邻域基 \left \{ V_{n} \right \},使得 n<m时有 V_{n} \supset V_{m},也就是说如果这个点处有可数邻域基,那么肯定有递降的可数邻域基(基中的元素构成递降的开集套);

C1空间中 x \in \bar{A} 当且仅当A中有一个收敛到x的序列;

对定义在C1空间X上的映射 f: X \to Y,f 连续当且仅当对X中的每一个收敛序列 x_{n} \to x,都有序列 f(x_{n}) 收敛于 f(x);

C2空间必是C1空间,必是Lindelof空间,必是可分空间,反过来不一定成立;

度量空间是C2空间当且仅当它是Lindelof空间或可分空间;

下限拓扑 R_{l} 是Lindelof空间、是可分空间、是C1空间,但不是C2空间;

Sorgenfrey平面 R_{l} \times R_{l} 是是C1空间、是可分空间、是Tychonoff空间,但不是C2空间、也不是Lindelof空间。

(2)分离公理性质:

X是T1空间等价于X的有限子集是闭集;

在T1空间中,x为子集A的聚点,则x的任一领域与A的交集为无穷集;

Hausdorff空间中一个序列最多收敛到一个点;

Hausdorff空间中任何有限子集都是闭集、任何紧致子集也都是闭集;

具有序拓扑的空间都是Hausdorff空间,也都是正则空间;

Hausdorff空间的子空间、积空间都是Hausdorff空间;正则空间的子空间、积空间都是正则空间;完全正则空间的子空间、积空间都是完全正则空间;但是正规空间则没有类似的性质;

实数上的K拓扑 R_{K} 是Hausdorff空间,但不是正则空间;

下限拓扑R_{l}是T5空间,但不是可度量化的空间;

Sorgenfrey平面 R_{l} \times R_{l} 和积空间 S_{\Omega} \times \bar{S_{\Omega}} 都是完全正则空间但不是正规空间;若J是不可数的则 R^{J} 不是正规空间;

拓扑群都是完全正则空间;

CW复形和拓扑流形都是Tychonoff空间;

正则Lindelof空间都是正规空间;

正则C2空间都是完全正规空间;

度量空间是C1空间、是T6空间也即完美正规的Hausdorff空间;

紧致Hausdorff空间都是正规空间;

序拓扑空间都是正规空间;

线性连续统都是正规空间;

(3)Kuratowski十四集定理:对拓扑空间X中任一子集A, 通过从A开始取若干次闭包或补集,最多能产生14个不同的集合

(4)二进分数的性质:

在实数轴上是稠密集,并且与其他稠密集(例如有理数集)相比是相对较小的稠密集;

任何实数都可以用 \frac{\left \lfloor 2^{i}x \right \rfloor}{2^{i}} 形式的二进分数无限逼近;

二进分数的和、积、差也是二进分数,而商则一般不是二进分数,因此二进分数集构成有理数集Q的一个子环

(5)Urysohn引理:正规空间中不相交的闭集被函数分离,即对正规空间X上的任意两个不相交的闭集A, B,存在一个从X到实值闭区间[a, b]的连续映射 f: X \to [a,b],它在A和B上分别取值为a, b,即f(A)=a,f(B)=b。

乌雷松引理有时称为“拓扑学中的第一非平凡事实”,通常用于构造正规空间上不同性质的连续函数。这个定理有广泛的应用,因为所有的度量空间和紧致豪斯多夫空间都是正规的。

证明思路:只需考虑单位区间[0,1]的情形即可。对(0,1)内的每个二进分数r,根据X的正规性构造特定的开子集 U(r),定义 f(x)=inf \left \{ r: x \in U(r) \right \},对所有的 x \in X。利用二进有理数是稠密的事实,便不难证明 f 是连续的,且具有性质 f(A) \subseteq \left \{ 0 \right \}, \, f(B) \subseteq \left \{ 1 \right \}

(6)Urysohn度量化定理:正则C2空间是可度量化的空间。即每一个有可数基的正则空间可以嵌入到无穷维欧氏空间 R^{\omega} 中。注意这只是可度量化的一个充分条件

证明思路:利用X是正则的且有一组可数基的假定就可以证明,X能嵌入一个度量空间Y之中,因此X与一个Y的子空间同胚。由于度量空间Y的子空间是可度量化的,于是得出X是可度量化的。将Y取作无穷维欧氏空间 R^{\omega} 的子空间 [0,1]^{\omega} 即可,它有一致度量 \bar{\rho}(x,y)=sup\left \{ \left | x_{i}-y_{i} \right | \right \}。通过乌雷松引理,存在一个可数连续函数序列 f_{n}: X \to [0,1],以此构造映射 F: X \to [0,1]^{\omega}, \, F(x)=(f_{1}(x),f_{2}(x), ...),证明它是一个嵌入映射,即F是连续的单射,并且F是从X到像集F(X)的一个同胚

(7)完全正则空间的充要条件:拓扑空间X是完全正则空间,当且仅当对某一指标集J,X同胚于 [0,1]^{J} 的了一个子空间

(8)Tietze扩张定理:设X是一个正规空间,A是X的一个闭子集,则任何一个连续映射 f: A \to [a,b] 都可以扩张为从整个空间X到[a, b]的一个连续映射,任何一个连续映射 f: A \to R 都可扩张为从整个空间X到R的一个连续映射

证明思路:构造一个定义在X上的连续函数序列 \left \{ f_{n} \right \},使得它一致收敛,并且 \left \{ f_{n} \right \} 在A上的限制随着n的增长逼近 f,于是极限函数是连续的,它在A上的限制等于 f

(9)有限单位分拆的存在性:正规空间X的任一有限开覆盖都存在对应的有限单位分拆

(10)流形的嵌入:一个m-维流形可以嵌入到 R^{N} 中,其中N是某一个正整数

(11)收缩引理:对正规空间的一个逐点有限加标开覆盖 \left \{ U_{1},U_{2},... \right \},则存在X的一个加标开覆盖 \left \{ V_{1},V_{2},... \right \},使得 \overline{V_{n}} \subset U_{n}

(12)Tychonoff定理:任意个紧致空间的乘积空间都是紧致的。注意这里"任意个"包括了可数无穷个或不可数无穷个,这时它等价于选择公理或Zorn引理

(13)Stone-Cech紧致化:设X是完全正则空间,则存在X的一个紧致化Y(即使得\bar{X}=Y的紧致Hausdorff空间Y),满足条件:对每一个有界连续函数 f: X \to R 都可以唯一地扩张为从Y到R的连续函数。这样的紧致化Y在等价意义下是唯一的,称为X的Stone-Cech紧致化,记作 \beta(X)。它是X的极大紧致化,也就是说X的每一个紧致化都等价于 \beta(X) 的一个商空间

Stone-Cech紧致化的重要性质:从X到任意紧致Hausdorff空间C的连续映射 f: X \to C,有唯一的一个连续映射 g: \beta(X) \to C 为它的扩张

 

度量化定理和仿紧致性


(1)局部有限族:对拓扑空间X的一个子集族 \mathcal{A},若X中的每一点都存在一个邻域只与 \mathcal{A} 的有限多个成员相交,则称 \mathcal{A} 是局部有限族。类似地可以定义局部有限的加标族。局部有限族的每个元素的闭包构成的族也是局部有限的

(2)可数局部有限族:X的子集族 \mathcal{B},若可以表示成可数个局部有限族 \mathcal{B}_{n} 的并,即 \mathcal{B}=\bigcup_{n \in Z_{+}}\mathcal{B}_{n},则 \mathcal{B} 称为可数局部有限族。这一概念也叫做 \sigma-局部有限族,其中 \sigma 表示"可数并"

(3)G_{\sigma} 集:如果空间X的一个子集等于X的可数个开子集的交,则称A为X中的一个 G_{\sigma} 集。有可数局部有限基的正则空间X一定是正规空间,并且每一个闭子集都是X的 G_{\sigma} 集

(4)局部离散族:对拓扑空间X的一个子集族 \mathcal{A},若X中的每一点都存在一个邻域最多与 \mathcal{A} 中的一个元素相交,则称 \mathcal{A} 是局部离散族

(5)可数局部离散族:X的子集族 \mathcal{B} 若等于可数个局部离散族的并,则称为可数局部离散族,也称为 \sigma-局部离散族

(6)仿紧致性:如果X的任意一个开覆盖 \mathcal{A} 都有一个局部有限的加细开覆盖 \mathcal{B},则称X是仿紧致的

(7)局部可度量化:如果空间X的每一点x有一个邻域U在子空间拓扑下是可度量化的,则称X是局部可度量化的

 

主要定理:

(1)Nagata-Smirnov度量化定理:拓扑空间X是可度量化的,当且仅当它是有可数局部有限基(即存在一个基 \mathcal{B} 由可数个局部有限族的并构成 \mathcal{B}=\bigcup_{n \in Z_{+}}\mathcal{B}_{n} )的正则空间

(2)Bing度量化定理:拓扑空间X是可度量化的,当且仅当它是有可数局部离散基的正则空间

(3)仿紧致性的性质:

仿紧致的Hausdorff空间都是正规空间;

仿紧致空间的闭子空间是仿紧致的;

度量空间都是仿紧致的;

正则Lindelof空间是仿紧致的;

若J是不可数的,则 R^{J} 不是仿紧致的;

(4)Smirnov度量化定理:空间X是可度量化的,当且仅当X是局部可度量化的仿紧致Hausdorff空间

 

完备度量空间和函数空间


(1)Cauchy列(基本列):度量空间(X, d)中的序列 \left \{ x_{n} \right \},如果满足 \forall \epsilon >0,\exists N\in Z, \, s.t. \,\, m,n>N, d(x_{n},x_{m})<\epsilon。注意在一般度量空间中Cauchy列不一定收敛

(2)完备度量空间:任意Cauchy列都收敛的度量空间,当然也要求X中的任一收敛序列必定是一个Cauchy列,即完备性要求其逆命题也成立。注意完备性不是拓扑性质,它不是在同胚下保持不变的性质

(3)有界函数:如果函数 f: X \to Y 的像集 f(X) 是度量空间 (Y, d) 的一个有界子集,则称函数 f 为有界的

(4)常用度量定义:

标准有界度量:\bar{d}(x,y)=min \left \{ d(x,y), 1 \right \} ,称为相应于d的标准有界度量。特别地,R的标准有界度量为 \bar{d}(a,b)=min \left \{ \left | a-b \right |, 1 \right \}

R^{n} 中的欧氏度量:d(x,y)=\left \| x-y \right \|=\sqrt{(x_{1}-y_{1})^{2}+...+(x_{n}-y_{n})^{2}}

R^{n} 中的平方度量:\rho(x,y)=max\left \{ \left | x_{1}-y_{1} \right |,...,\left | x_{n}-y_{n} \right | \right \}

(5)一致度量:设(Y,d)是度量空间,\bar{d}(a,b)=min \left \{ d(a,b), 1 \right \} 是Y上关于d的标准有界度量,给定指标集J,定义 Y^{J} 上的度量 \bar{\rho}(f,g)=sup\left \{ \bar{d}(f({\alpha}), g({\alpha})) \,|\, \alpha \in J \right \} ,它称为 Y^{J} 上关于d的一致度量。注意这里的 Y^{J} 的元素使用了函数记号,而不是串记号

(6)上确界度量:设(Y,d)是度量空间,在由X到Y的有界函数 f: X \to Y 构成的集合 \mathcal{B}(X, Y) 定义度量 \rho(f,g)=sup\left \{ d(f(x), g(x)) \,|\, x \in X \right \} ,称为上确界度量。注意如果X是紧致的,则每一个连续函数 f: X \to Y 都是有界的,这时上确界度量就定义在连续函数集合 \mathcal{C}(X, Y) 上

它与一致度量满足关系: \bar{\rho}(f,g)=min\left \{ \rho(f,g), 1 \right \},即一致度量 \bar{\rho} 是关于上确界度量 \rho 的标准有界度量

(7)度量空间的完备化:设X是一个度量空间,若 h: X \to Y 是从X到完备度量空间Y的一个等距嵌入,则Y的子空间 \overline{h(X)} (即h的像集的闭包)是一个完备度量空间,它称为X的一个完备化

(8)Peano空间:若一个Hausdorff空间是单位闭区间[0,1]的连续映射下的像,则称之为Peano空间

(9)等度连续:设(X,d)是度量空间,\mathcal{F} 是函数空间 \mathcal{C}(X, Y) 的一个子集,在点 x_{0} \in X处,若对任意 \epsilon >0,存在 x_{0} 的一个邻域U,使得对所有 x \in U 和所有 f \in \mathcal{F},都有 d(f(x), f(x_{0}))<\epsilon,则称函数族 \mathcal{F} 在 x_{0} 处等度连续。若X的每一点处都等度连续,则称 \mathcal{F} 是等度连续的。直观上,等度连续表示连续函数序列在自变量变动时,它们的取值都在“相同程度”的范围中浮动。

(10)完全有界:对度量空间(X,d),若对任意 \epsilon >0,存在一个由 \epsilon-球构成的X的有限覆盖,则称X完全有界。完全有界蕴涵了通常的有界

(11)一致有界/逐点有界(点态有界):设(X,d)是度量空间,\mathcal{F} 是函数空间 \mathcal{C}(X, Y) 的一个子集

一致有界:只限于实值连续函数集 \mathcal{C}(X, R) 。存在常数M>0,对所有 x \in X, \, f \in \mathcal{F},都有 \left | f(x) \right |\leq M,则称 \mathcal{F} 一致有界。注意一致有界蕴涵了逐点有界;

逐点有界:对所有 x \in X,Y的子集 \mathcal{F}_{x}=\left \{ f(x) \,|\, f \in \mathcal{F} \right \} 关于d是有界的,则称 \mathcal{F} 是逐点有界的。

(12)逐点收敛拓扑:对X中的一点x和Y中的一个开集U,定义 \mathcal{C}(X, Y) 中的子集 S(x,U)=\left \{ f \,|\, f \in \mathcal{C}(X,Y), f(x) \in U \right \},所有集合 S(x, U)构成 \mathcal{C}(X, Y) 的拓扑的一个子基,这个拓扑称为 \mathcal{C}(X, Y) 的逐点收敛拓扑

(13)紧致收敛拓扑:设X是拓扑空间,(Y,d)是度量空间,给定 \mathcal{C}(X, Y) 中的一个元素 f、X的一个紧致子空间C、以及一个数 \epsilon >0,令 B_{C}(f, \epsilon) 表示 Y^{X} 中所有满足下式的元素g构成的集合:

sup\left \{ d(f(x),g(x)) \,|\, x \in C \right \}<\epsilon

这些集合 B_{C}(f, \epsilon) 组成了 \mathcal{C}(X, Y) 的一个拓扑基,称这个拓扑为 \mathcal{C}(X, Y) 的紧致收敛拓扑,或称为紧致集合上的一致收敛拓扑

(14)紧致开拓扑:设X和Y是拓扑空间,对X的紧致子集C,和Y的开子集U,定义 S(C,U)=\left \{ f \,|\, f \in \mathcal{C}(X,Y), f(C) \subset U \right \},所有集合 S(C,U)组成了 \mathcal{C}(X,Y) 的一个拓扑的子基,这个拓扑称为紧致开拓扑。

注意如果Y是度量空间,则紧致开拓扑与紧致收敛拓扑一致,也就是说在这种情况下,函数序列 \left \{ g_{n} \right \} 在紧致开拓扑中收敛到 f,当且仅当对X的所有紧致子集C,\left \{ g_{n} \right \} 都在C上一致收敛到 f 。

紧致开拓扑是定义在两个拓扑空间之间的所有连续映射的集合上的一种拓扑。紧致开拓扑是函数空间上的常用拓扑之一,在同伦理论和泛函分析中有应用

(15)赋值映射:设X是局部紧致的Hausdorff空间,\mathcal{C}(X,Y) 有紧致开拓扑,映射 e: X \times \mathcal{C}(X,Y) \to Y 定义为 e(x,f)=f(x),它称为赋值映射。赋值映射是连续的

(16)稠密集:A是X的子集,若X的任意开子集都与A相交,则称A在X中稠密,也称A是稠密集。注意A稠密当且仅当 \bar{A}=X

稀疏集(疏朗集、无处稠密集):X的任意开子集都含有一个开子集与A不相交,则称A在X中是稀疏集,或无处稠密集。稀疏集的补集是稠密集,但反过来不一定成立

(17)第一纲集/第二纲集:若A是可数个稀疏集的并,则称A为第一纲集,否则称A为第二纲集(即不是可数个稀疏集的并)

(18)Baire空间:若拓扑空间X中可数个稠密开集的交仍然是稠密集,则称X为Baire空间

(19)拓扑维数:拓扑空间X的拓扑维数是 n ,当且仅当 n 是最小的整数使得以下陈述成立:对于X任意的一个有限开覆盖A,都存在另一个有限开覆盖B,使得 B是A的精细,且X内的每个点都只属于至多 n+1 个B的元素。拓扑维数又称勒贝格维数,记作 dimX

(20)弧A:同胚于单位闭区间 I=[0, 1] 的一个空间。A的端点是指使得 A-\left \{ p \right \}, \, A-\left \{ q \right \} 是连通子集的点p和q;

有限线性图G:一个Hausdorff空间,可以表示成有限多段弧的并,其中每对弧最多交于一个公共端点。这些弧称为G的边,这些弧的端点称为G的顶点。G的每条边因为是紧致的,所以在G中是闭的。G的拓扑维数为1

(21)几何独立(仿射独立):R^{n} 中的一个点集 \left \{ x_{0},...,x_{k} \right \} 称为几何独立或仿射独立的,如果等式

\sum_{i=0}^{k}a_{i}x_{i}=0, \,\, and \,\, \sum_{i=0}^{k}a_{i}=0

仅在每一个 a_{i}=0 时才成立。这等价于 R^{n} 中的向量集 x_{1}-x_{0},...,x_{k}-x_{0} 线性独立

(22)k-维平面:设 \left \{ x_{0},...,x_{k} \right \}  为 R^{n} 中的一个几何独立点集,由它们确定的点x的集合 \left \{x=\sum_{i=0}^{k}t_{i}x_{i} \,\,|\,\, \sum_{i=0}^{k}t_{i}=1 \right \} ,称为k-维平面P。这可以写成

x=x_{0}+\sum_{i=1}^{k}a_{i}(x_{i}-x_{0})

因此P可以描述成由点集 \left \{ x_{0},...,x_{k} \right \} 确定的平面,或者说过点 x_{0},并且与向量 x_{1}-x_{0},...,x_{k}-x_{0} 平行的平面

 

主要定理:

(1)常见的完备度量空间:

欧氏空间 R^{k} :在通常的欧氏度量d和平方度量 \rho下都是完备的;

无穷维欧氏空间 R^{\omega} :根据R的标准有界度量 \bar{d}(a,b)=min \left \{ \left | a-b \right |, 1 \right \},定义 R^{\omega} 上的度量 D(x,y)=sup\left \{ \frac{\bar{d}(x_{i},y_{i})}{i} \right \} ,则在该度量下 R^{\omega} 是完备的;

任意积空间 Y^{J}:若(Y,d)是完备度量空间,则空间 Y^{J} 在相应于d的一致度量 \bar{\rho}(f,g)=sup\left \{ \bar{d}(f({\alpha}), g({\alpha})) \,|\, \alpha \in J \right \} 下也是完备的;

连续函数空间和有界函数空间:若X是拓扑空间,(Y, d) 是度量空间,则连续函数集 \mathcal{C}(X, Y) 和有界函数集 \mathcal{B}(X, Y) 在一致度量下都是 Y^{X} 中的闭集,因此如果Y是完备的,则这两个空间在一致度量下也是完备的;

n维单位球面:S^{n}=\left \{ (x_{1},...,x_{n}) \,|\, x_{i} \in R, \, \sum_{i=1}^{n}x_{i}^{2}=1 \right \} ,它同胚于 R^{n-1} 的单点紧致化;

n维单位开球:D^{n}=\left \{ (x_{1},...,x_{n}) \,|\, x_{i} \in R, \, \sum_{i=1}^{n}x_{i}^{2}<1 \right \} ,它同胚于 R^{n}

Banach空间:完备的赋范向量空间;

Hilbert空间:带有内积的完备向量空间。定义为 H=\left \{ (x_{i})_{i \in Z_{+}} \,|\, x_{i} \in R, \sum_{i=1}^{\infty}x_{i}^{2}<+\infty \right \},其上的度量为 d(\vec{x}, \vec{y}) = \sqrt{\sum_{i=1}^{\infty}(x_{i}, y_{i})^{2}} 。每个希尔伯特空间都是巴拿赫空间;

(2)闭集套定理:若X是完备度量空间,且有一列非空递降闭子集 A_{1} \supseteq A_{2} \supseteq ...,则它们的交集 A=\bigcap_{i=1}^{\infty}A_{i} 非空;若 diam A_{i} \to 0(i \to \infty),则A是单点集

(3)度量空间的完备化:对每个度量空间(X,d),都存在从X到某个完备度量空间Y的等距嵌入 h: X \to Y,而像集的闭包 \overline{h(X)} 就是X的一个完备化,在等距意义下X的完备化是唯一的

等距:即两点间的度量距离与它们像之间的度量距离是相等的

(4)Peano曲线:设单位区间 I=[0,1],则存在一个连续映射 f: I \to I^{2},它的像填满了整个正方形 I^{2}

(5)Hahn-Mazurkiewicz定理:Hausdorff空间X是紧致的,连通的、局部连通的C2空间,当且仅当存在一个从单位区间I=[0,1]到X的连续满射 f: I \to X

常用推论:存在连续的满射 f: I \to I^{n}, \, g: R \to R^{n}, \, h: I \to I^{\omega},但不存在连续满射 f: R \to R^{\omega}

(6)Heine–Borel定理(有限覆盖定理):度量空间是紧致的,当且仅当它是完备的并且完全有界的

(7)函数空间三种拓扑的关系:设X是一空间,(Y,d)是度量空间,对函数空间 Y^{X} 上的三种拓扑,它们的关系为一致拓扑包含了紧致收敛拓扑,紧致收敛拓扑包含了逐点收敛拓扑。若X是紧致的,则前两个拓扑是一致的。若X是离散的,则后两个拓扑是一致的

(8)Arzela-Ascoli定理:若X是一个紧致Hausdorff空间,Y是完备度量空间,那么 \mathcal{C}(X, Y) 的子集 \mathcal{F} 在紧致开拓扑中是紧致的,当且仅当它是等度连续且逐点有界的闭集。

由此可见,函数集 \mathcal{F} 是紧致的 \Leftrightarrow \mathcal{F} 是等度连续且逐点有界的闭集 \Leftrightarrow \mathcal{F} 中的所有序列都有一致收敛的子序列(即列紧的,在度量空间中它与紧致性等价)。

这是泛函分析中一个基本结果,它给出了从紧致度量空间映到度量空间的连续函数集是紧集的一个充分必要条件,后来由Frechet推广到一般的紧致Hausdorff空间上。其中主要涉及的条件是函数集的等度连续性质。该定理是利用欧拉法证明常微分方程组理论中的皮亚诺存在性定理时不可或缺的一环,也是复分析中的Monter定理的证明中的重要组成部分。此外,调和分析和群表示论中的Peter–Weyl定理的一个证明中用到了此定理。

证明思路:根据条件,函数序列 \mathcal{F} 如果一致收敛,则收敛到一个连续映射 f,由 f 的一致连续性和收敛的一致性,可以证明 \mathcal{F} 是等度连续的。另外由收敛的一致性和连续映射将紧集映为紧集的性质,可以推出该序列完全有界。充分性要用对角线认证法来证

总结:

度量空间中列紧性(即序列收敛)的条件:Bolzano-Weierstrass定理,列紧性 \Leftrightarrow 有界闭集;

度量空间中紧集的条件:Heine–Borel定理,紧致性 \Leftrightarrow 完备且完全有界;特别地,对欧氏空间则有紧集 \Leftrightarrow 有界闭集;

函数空间中紧集的条件:Arzela-Ascoli定理,紧致性 \Leftrightarrow 等度连续且逐点有界。

(9)Baire纲定理:若X是局部紧致Hausdorff空间或是完备度量空间,则X中任意可数个稠密开集的交仍然是稠密集;X中的非空开集都是第二纲集;X中的第一纲集无内点。

注意定理中的条件是或的关系,一个不能推出另一个,因为存在一个不是局部紧的完备度量空间,也存在一个不可度量化的局部紧致豪斯多夫空间(不可数福特空间)。定理中的几条结论是等价的,互相蕴涵,满足其中一条性质的拓扑空间称为Baire空间。定理给出了局部紧致Hausdorff空间、完备度量空间的一个重要特征,即它们必是第二纲集。贝尔纲定理是点集拓扑学和泛函分析中的一个重要的工具,是闭集套定理的发展与提高,在证明许多存在定理时是很有用的。例如可以用来证明开映射定理、闭图像定理和一致有界原理(共鸣定理)。

证明思路:需要选择公理的某种形式,实际上该定理与选择公理的一个较弱的版本——相依选择公理等价。

(10)Baire空间性质:Baire空间X在连续开映射 f: X \to Y 下的像f(X)也是Baire空间;Baire空间的开子空间也是Baire空间;若X有稠密的Baire子空间则X是Baire空间;有理数集Q不是Baire空间;正整数集 Z_{+} 是Baire空间;R的任意闭子空间是Baire空间;无理数集是Baire空间;Cantor集是Baire空间;流形是Baire空间

(11)Baire纲定理的一些应用:

每一个没有孤立点的完备度量空间都是不可数的。特别地,实数集是不可数的;

从Baire空间X到度量空间(Y,d)的一个连续函数序列 f_{n}: X \to Y,如果对X中的每个点x,该函数序列都收敛到 f(x): X \to Y,那么 f 连续点的集合在X中稠密。可见,取 f= [0,1],则f必定在[0,1]的无限多个点处连续;

若D是R的可数稠密子集,则没有函数 f: R \to R 恰好在D的所有点处连续;

无处可微连续函数的存在性:设 h: [0,1] \to R 是连续函数,任意给定 \epsilon >0,则存在一个函数 g: [0,1] \to R 满足 \left | h(x)-g(x) \right |<\epsilon , \, \forall x \in X ,并且g是连续且无处可微的。

(12)Banach-Steinhaus定理(共鸣定理、一致有界原理):若X是完备度量空间,实值连续函数集 \mathcal{C}(X, R) 的子集 \mathcal{F} 在X上逐点有界,则X中存在开子集U,使得 \mathcal{F} 在U上一致有界。

另一种表述:逐点有界的线性算子必定一致有界

(13)若拓扑空间是由有限个闭子空间的并构成 X=Y_{1} \cup ... \cup Y_{k},并且每个闭子空间都是有限维的,则 dimX=max\left \{ dimY_{1},...,dimY_{k} \right \}

(14)嵌入定理:若X是拓扑维数为m的紧致可度量化空间(也可以放宽到具有可数基的局部紧致Hausdorff空间),则它可以嵌入到 R^{2m+1} 中,并且这个数 N=2m+1 是满足能够嵌入的最小值

这个定理是Baire纲定理的一个应用

(15)单位闭区间 I=[0,1] 的拓扑维数为1;R^{m} 的任意紧致子集的拓扑维数最多为m;R^{m} 中任意包含闭三角区域的紧致子空间的拓扑维数恰好等于m;有限线性图都能嵌入到 R^{3} 中,但不能嵌入到 R^{2} 中;

(16)流形的拓扑维数:每一个m-维流形的拓扑维数恰好等于m;每一个m-维流形可嵌入到 R^{2m+1} 中作为一个闭子空间

(17)可嵌入的充要条件:空间X能嵌入到 R^{N} (N是一个非负整数)中作为一个闭子空间,当且仅当X是具有可数基的局部紧致Hausdorff空间,并且是有限拓扑维数

 

 

参考书籍:

(1)拓扑学:第2版,James R.Munkres

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值