题:设
n
=
p
1
a
1
p
2
a
2
.
.
.
p
k
a
k
n=p_1^{a_1}p_2^{a_2}...p_k^{a_k}
n=p1a1p2a2...pkak为正整数
n
n
n的素数幂分解,那么
ϕ
(
n
)
=
n
(
1
−
1
p
1
)
(
1
−
1
p
2
)
.
.
.
(
1
−
1
p
k
)
\phi(n) = n(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k})
ϕ(n)=n(1−p11)(1−p21)...(1−pk1)
(摘自《初等数论及其应用》中文第六版第七章第一节7.5定理)
容斥原理证明:
∵
n
=
p
1
a
1
p
2
a
2
.
.
.
p
k
a
k
\because n = p_1^{a_1}p_2^{a_2}...p_k^{a_k}
∵n=p1a1p2a2...pkak
∴
ϕ
(
n
)
=
n
−
∑
i
=
1
k
n
p
i
+
∑
1
≤
i
<
j
≤
k
n
p
i
p
j
+
.
.
.
+
(
−
1
)
u
∑
1
≤
i
1
<
i
2
<
.
.
.
<
i
u
≤
k
n
∏
1
p
i
1
p
i
2
.
.
.
p
i
k
+
(
−
1
)
k
∏
i
=
1
k
n
p
i
\therefore \phi(n) = n - \sum_{i=1}^{k}\frac{n}{p_i} + \sum_{1 \leq i < j \leq k}\frac{n}{p_ip_j} + ... + (-1)^u\sum_{1 \leq i_1 < i_2 < ... < i_u \leq k}n\prod\frac{1}{p_{i_1}p_{i_2}...p_{i_k}} + (-1)^k \prod_{i=1}^{k}\frac{n}{p_i}
∴ϕ(n)=n−∑i=1kpin+∑1≤i<j≤kpipjn+...+(−1)u∑1≤i1<i2<...<iu≤kn∏pi1pi2...pik1+(−1)k∏i=1kpin
= n [ 1 − ∑ i = 1 k 1 p i + ∑ 1 ≤ i < j ≤ k 1 p i p j + . . . + ( − 1 ) u ∑ 1 ≤ i 1 < i 2 < . . . < i u ≤ k ∏ 1 p i 1 p i 2 . . . p i k + ( − 1 ) k ∏ i = 1 k 1 p i ] = n[1 - \sum_{i=1}^{k}\frac{1}{p_i} + \sum_{1 \leq i < j \leq k}\frac{1}{p_ip_j} + ... + (-1)^u\sum_{1 \leq i_1 < i_2 < ... < i_u \leq k}\prod\frac{1}{p_{i_1}p_{i_2}...p_{i_k}} + (-1)^k \prod_{i=1}^{k}\frac{1}{p_i}] =n[1−∑i=1kpi1+∑1≤i<j≤kpipj1+...+(−1)u∑1≤i1<i2<...<iu≤k∏pi1pi2...pik1+(−1)k∏i=1kpi1]
通过观察这个式子可以得出,对于任意
u
u
u个素数因子组合有
(
−
1
)
u
∏
1
p
i
1
p
i
2
.
.
.
p
i
u
(-1)^u\prod\frac{1}{p_{i_1}p_{i_2}...p_{i_u}}
(−1)u∏pi1pi2...piu1
等价于从
∏
i
=
1
k
(
1
−
1
p
i
)
\prod_{i=1}^{k}(1-\frac{1}{p_i})
∏i=1k(1−pi1)里选取对应的因子和剩余的
1
1
1,即
(
−
1
)
u
∏
1
p
i
1
p
i
2
.
.
.
p
i
u
(-1)^u\prod\frac{1}{p_{i_1}p_{i_2}...p_{i_u}}
(−1)u∏pi1pi2...piu1
∴ ϕ ( n ) = n ∏ i = 1 k ( 1 − 1 p i ) \therefore \phi(n) = n\prod_{i=1}^{k}(1-\frac{1}{p_i}) ∴ϕ(n)=n∏i=1k(1−pi1),命题得证
概率证明:
∵
\because
∵对于任一
u
∈
[
1
,
n
]
u \in [1, n]
u∈[1,n],能被任意素因子
p
i
p_i
pi整除的数有
n
p
i
\frac{n}{p_i}
pin,概率为
1
p
i
\frac{1}{p_i}
pi1
∴ u \therefore u ∴u不能被 p i p_i pi整除的概率是 1 − 1 p i 1-\frac{1}{p_i} 1−pi1
∴
u
\therefore u
∴u不能被所有素因子整除的概率是
∏
i
=
1
k
(
1
−
1
p
i
)
\prod_{i=1}^{k}(1-\frac{1}{p_i})
∏i=1k(1−pi1)
∴
\therefore
∴这样的
u
u
u的数量即为与
n
n
n互素的个数
ϕ
(
n
)
=
n
∏
i
=
1
k
(
1
−
1
p
i
)
=
n
(
1
−
1
p
1
)
(
1
−
1
p
2
)
.
.
.
(
1
−
1
p
k
)
\phi(n) = n\prod_{i=1}^{k}(1-\frac{1}{p_i}) = n(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k})
ϕ(n)=n∏i=1k(1−pi1)=n(1−p11)(1−p21)...(1−pk1)
从而命题得证