初等证明:欧拉函数的排列组合和概率证明

题:设 n = p 1 a 1 p 2 a 2 . . . p k a k n=p_1^{a_1}p_2^{a_2}...p_k^{a_k} n=p1a1p2a2...pkak为正整数 n n n的素数幂分解,那么
ϕ ( n ) = n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p k ) \phi(n) = n(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k}) ϕ(n)=n(1p11)(1p21)...(1pk1)
(摘自《初等数论及其应用》中文第六版第七章第一节7.5定理)

容斥原理证明:

∵ n = p 1 a 1 p 2 a 2 . . . p k a k \because n = p_1^{a_1}p_2^{a_2}...p_k^{a_k} n=p1a1p2a2...pkak
∴ ϕ ( n ) = n − ∑ i = 1 k n p i + ∑ 1 ≤ i &lt; j ≤ k n p i p j + . . . + ( − 1 ) u ∑ 1 ≤ i 1 &lt; i 2 &lt; . . . &lt; i u ≤ k n ∏ 1 p i 1 p i 2 . . . p i k + ( − 1 ) k ∏ i = 1 k n p i \therefore \phi(n) = n - \sum_{i=1}^{k}\frac{n}{p_i} + \sum_{1 \leq i &lt; j \leq k}\frac{n}{p_ip_j} + ... + (-1)^u\sum_{1 \leq i_1 &lt; i_2 &lt; ... &lt; i_u \leq k}n\prod\frac{1}{p_{i_1}p_{i_2}...p_{i_k}} + (-1)^k \prod_{i=1}^{k}\frac{n}{p_i} ϕ(n)=ni=1kpin+1i<jkpipjn+...+(1)u1i1<i2<...<iuknpi1pi2...pik1+(1)ki=1kpin

= n [ 1 − ∑ i = 1 k 1 p i + ∑ 1 ≤ i &lt; j ≤ k 1 p i p j + . . . + ( − 1 ) u ∑ 1 ≤ i 1 &lt; i 2 &lt; . . . &lt; i u ≤ k ∏ 1 p i 1 p i 2 . . . p i k + ( − 1 ) k ∏ i = 1 k 1 p i ] = n[1 - \sum_{i=1}^{k}\frac{1}{p_i} + \sum_{1 \leq i &lt; j \leq k}\frac{1}{p_ip_j} + ... + (-1)^u\sum_{1 \leq i_1 &lt; i_2 &lt; ... &lt; i_u \leq k}\prod\frac{1}{p_{i_1}p_{i_2}...p_{i_k}} + (-1)^k \prod_{i=1}^{k}\frac{1}{p_i}] =n[1i=1kpi1+1i<jkpipj1+...+(1)u1i1<i2<...<iukpi1pi2...pik1+(1)ki=1kpi1]

通过观察这个式子可以得出,对于任意 u u u个素数因子组合有
( − 1 ) u ∏ 1 p i 1 p i 2 . . . p i u (-1)^u\prod\frac{1}{p_{i_1}p_{i_2}...p_{i_u}} (1)upi1pi2...piu1
等价于从 ∏ i = 1 k ( 1 − 1 p i ) \prod_{i=1}^{k}(1-\frac{1}{p_i}) i=1k(1pi1)里选取对应的因子和剩余的 1 1 1,即
( − 1 ) u ∏ 1 p i 1 p i 2 . . . p i u (-1)^u\prod\frac{1}{p_{i_1}p_{i_2}...p_{i_u}} (1)upi1pi2...piu1

∴ ϕ ( n ) = n ∏ i = 1 k ( 1 − 1 p i ) \therefore \phi(n) = n\prod_{i=1}^{k}(1-\frac{1}{p_i}) ϕ(n)=ni=1k(1pi1),命题得证

概率证明:

∵ \because 对于任一 u ∈ [ 1 , n ] u \in [1, n] u[1,n],能被任意素因子 p i p_i pi整除的数有
n p i \frac{n}{p_i} pin,概率为 1 p i \frac{1}{p_i} pi1

∴ u \therefore u u不能被 p i p_i pi整除的概率是 1 − 1 p i 1-\frac{1}{p_i} 1pi1

∴ u \therefore u u不能被所有素因子整除的概率是
∏ i = 1 k ( 1 − 1 p i ) \prod_{i=1}^{k}(1-\frac{1}{p_i}) i=1k(1pi1)

∴ \therefore 这样的 u u u的数量即为与 n n n互素的个数
ϕ ( n ) = n ∏ i = 1 k ( 1 − 1 p i ) = n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p k ) \phi(n) = n\prod_{i=1}^{k}(1-\frac{1}{p_i}) = n(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k}) ϕ(n)=ni=1k(1pi1)=n(1p11)(1p21)...(1pk1)

从而命题得证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值