初等证明:如果n为正整数,那么其每个因子的因子个数之和的平方等于其每个因子的因子个数的立方之和

题:如果 n n n为正整数,那么 ( ∑ d ∣ n τ ( d ) ) 2 = ∑ d ∣ n τ ( d ) 3 (\sum_{d|n}\tau(d))^2 = \sum_{d|n}\tau(d)^3 (dnτ(d))2=dnτ(d)3
(摘自《初等数论及其应用》第六版7.2节习题)

前言:通过观察这两个式子,结合已知的定理
( m , n ) = 1 ⇒ τ ( m n ) = τ ( m ) τ ( n ) (m,n) = 1 \Rightarrow \tau(mn) = \tau(m)\tau(n) (m,n)=1τ(mn)=τ(m)τ(n)
从而推断出是否等式两边都满足乘性检验
如果满足则只需要证明 n = p a n = p^a n=pa的单个素因子情况即可
而经过推算,确实满足上述猜想

证:设 f ( n ) = ( ∑ d ∣ n τ ( d ) ) 2 f(n) = (\sum_{d|n}\tau(d))^2 f(n)=(dnτ(d))2,且 ( m , n ) = 1 (m, n) = 1 (m,n)=1

f ( m n ) = ( ∑ d ∣ m n τ ( d ) ) 2 f(mn) = (\sum_{d|mn}\tau(d))^2 f(mn)=(dmnτ(d))2

= ( ∑ d 1 ∣ m , d 2 ∣ n τ ( d 1 d 2 ) ) 2 = (\sum_{d_1|m, d_2|n}\tau(d_1d_2))^2 =(d1m,d2nτ(d1d2))2

= ( ∑ d 1 ∣ m , d 2 ∣ n τ ( d 1 ) τ ( d 2 ) ) 2 = (\sum_{d_1|m, d_2|n}\tau(d_1)\tau(d_2))^2 =(d1m,d2nτ(d1)τ(d2))2

= ( ∑ d 1 ∣ m τ ( d 1 ) ∑ d 2 ∣ n τ ( d 2 ) ) 2 = (\sum_{d_1|m} \tau(d_1)\sum_{d_2|n}\tau(d_2))^2 =(d1mτ(d1)d2nτ(d2))2

= ( ∑ d 1 ∣ m τ ( d 1 ) ) 2 ( ∑ d 2 ∣ n τ ( d 2 ) ) 2 = (\sum_{d_1|m} \tau(d_1))^2(\sum_{d_2|n}\tau(d_2))^2 =(d1mτ(d1))2(d2nτ(d2))2

= f ( m ) f ( n ) = f(m)f(n) =f(m)f(n)

同样设 g ( n ) = ∑ d ∣ n τ ( d ) 3 g(n) = \sum_{d|n}\tau(d)^3 g(n)=dnτ(d)3,且 ( m , n ) = 1 (m, n) = 1 (m,n)=1

g ( m n ) = ∑ d ∣ m n τ ( d ) 3 g(mn) = \sum_{d|mn}\tau(d)^3 g(mn)=dmnτ(d)3

= ∑ d 1 ∣ m , d 2 ∣ n τ ( d 1 d 2 ) 3 = \sum_{d_1|m, d_2|n}\tau(d_1d_2)^3 =d1m,d2nτ(d1d2)3

= ∑ d 1 ∣ m , d 2 ∣ n τ ( d 1 ) 3 τ ( d 2 ) 3 = \sum_{d_1|m, d_2|n}\tau(d_1)^3\tau(d_2)^3 =d1m,d2nτ(d1)3τ(d2)3

= ∑ d 1 ∣ m τ ( d 1 ) 3 ∑ d 2 ∣ n τ ( d 2 ) 3 = \sum_{d_1|m}\tau(d_1)^3 \sum_{d_2|n}\tau(d_2)^3 =d1mτ(d1)3d2nτ(d2)3

= g ( m ) g ( n ) = g(m)g(n) =g(m)g(n)

∴ \therefore f ( n ) f(n) f(n) g ( n ) g(n) g(n)都满足乘性检验
∴ \therefore 如果对于 n = p a n = p^a n=pa等式成立,则结合上述结果可得命题成立

∵ f ( p a ) = ( ∑ d ∣ p a τ ( d ) ) 2 \because f(p^a) = (\sum_{d|p^a}\tau(d))^2 f(pa)=(dpaτ(d))2

= ( ∑ i = 0 a i + 1 ) 2 = (\sum_{i = 0}^{a}i+1)^2 =(i=0ai+1)2

= ( a + 1 ) 2 ( a + 2 ) 2 4 = \frac{(a+1)^2(a+2)^2}{4} =4(a+1)2(a+2)2

∵ g ( p a ) = ∑ d ∣ p a τ ( d ) 3 \because g(p^a) = \sum_{d|p^a}\tau(d)^3 g(pa)=dpaτ(d)3

= ∑ i = 0 a ( i + 1 ) 3 = \sum_{i = 0}^{a}(i+1)^3 =i=0a(i+1)3

这里需要求出 ∑ i = 1 n i 3 \sum_{i = 1}^{n}i^3 i=1ni3,就记忆而言早已不复存在,我也从不特意背或者记下定理和等式,而是大概记得有这么个等式或者定理及其论证要点,而论证要点才是最重要的,如果这个也记不得,那么最好自己也推导一遍,而这并不是重复造轮胎,如果不明白不了解不清楚甚至不知其论证依据而死记硬背其结论,又有何颜面站在伟人的肩膀上呢?而这里的幂次求和,可根据其高一阶的相邻数的差得到,即

∵ ( k + 1 ) 4 − k 4 = 4 k 3 + 6 k 2 + 4 k + 1 \because (k+1)^4 - k^4 = 4k^3 + 6k^2 + 4k + 1 (k+1)4k4=4k3+6k2+4k+1

∴ ∑ i = 1 n ( i + 1 ) 4 − i 4 \therefore \sum_{i = 1}^{n}(i+1)^4-i^4 i=1n(i+1)4i4

= ( n + 1 ) 4 − 1 = (n+1)^4 - 1 =(n+1)41

= ∑ i = 1 n ( 4 i 3 + 6 i 2 + 4 i + 1 ) = \sum_{i=1}^{n}(4i^3 + 6i^2 + 4i + 1) =i=1n(4i3+6i2+4i+1)

这里需要求出 ∑ i = 1 n i 2 \sum_{i=1}^{n}i^2 i=1ni2,同样根据高一阶相邻差计算,即

∵ ( k + 1 ) 3 − k 3 = 3 k 2 + 3 k + 1 \because (k+1)^3 - k^3 = 3k^2 + 3k + 1 (k+1)3k3=3k2+3k+1

∴ ∑ i = 1 n ( i + 1 ) 3 − i 3 \therefore \sum_{i = 1}^{n}(i+1)^3-i^3 i=1n(i+1)3i3

= ( n + 1 ) 3 − 1 = (n+1)^3 - 1 =(n+1)31

= ∑ i = 1 n ( 3 i 2 + 3 i + 1 ) = \sum_{i=1}^{n}(3i^2 + 3i + 1) =i=1n(3i2+3i+1)

∴ ∑ i = 1 n ( 6 i 2 + 4 i + 1 ) \therefore \sum_{i=1}^{n}(6i^2 + 4i + 1) i=1n(6i2+4i+1)

= 2 ( n + 1 ) 3 − 2 − ∑ i = 1 n 2 i − n = 2(n+1)^3 - 2 - \sum_{i = 1}^{n}2i - n =2(n+1)32i=1n2in

= 2 ( n + 1 ) 3 − 2 − n ( n + 1 ) − n = 2(n+1)^3 - 2 - n(n+1) - n =2(n+1)32n(n+1)n

= 2 ( n + 1 ) 3 − n ( n + 1 ) − ( n + 1 ) − 1 = 2(n+1)^3 - n(n+1) - (n+1) - 1 =2(n+1)3n(n+1)(n+1)1

= 2 ( n + 1 ) 3 − ( n + 1 ) 2 − 1 = 2(n+1)^3 - (n+1)^2 - 1 =2(n+1)3(n+1)21

= ( 2 n + 1 ) ( n + 1 ) 2 − 1 = (2n+1)(n+1)^2 - 1 =(2n+1)(n+1)21

∴ ∑ i = 1 n 4 i 3 \therefore \sum_{i = 1}^{n}4i^3 i=1n4i3

= ( n + 1 ) 4 − 1 − [ ( 2 n + 1 ) ( n + 1 ) 2 − 1 ] = (n+1)^4 - 1 - [(2n+1)(n+1)^2 - 1] =(n+1)41[(2n+1)(n+1)21]

= ( n + 1 ) 4 − ( 2 n + 1 ) ( n + 1 ) 2 = (n+1)^4 - (2n+1)(n+1)^2 =(n+1)4(2n+1)(n+1)2

= ( n + 1 ) 2 [ ( n + 1 ) 2 − ( 2 n + 1 ) ] = (n+1)^2[(n+1)^2 - (2n + 1)] =(n+1)2[(n+1)2(2n+1)]

= n 2 ( n + 1 ) 2 = n^2(n+1)^2 =n2(n+1)2

∴ ∑ i = 1 n i 3 = n 2 ( n + 1 ) 2 4 \therefore \sum_{i = 1}^{n}i^3 = \frac{n^2(n+1)^2}{4} i=1ni3=4n2(n+1)2

继续证明

∴ g ( p a ) = ∑ d ∣ p a τ ( d ) 3 \therefore g(p^a) = \sum_{d|p^a}\tau(d)^3 g(pa)=dpaτ(d)3

= ∑ i = 0 a ( i + 1 ) 3 = \sum_{i = 0}^{a}(i+1)^3 =i=0a(i+1)3

= ∑ i = 1 a + 1 i 3 = \sum_{i = 1}^{a+1}i^3 =i=1a+1i3

= ( a + 1 ) 2 ( a + 2 ) 2 4 = \frac{(a+1)^2(a+2)^2}{4} =4(a+1)2(a+2)2

= f ( p a ) = f(p^a) =f(pa)

n = p 1 a 1 p 2 a 2 . . . p m a m n = p_1^{a_1}p_2^{a_2}...p_m^{a_m} n=p1a1p2a2...pmam

∴ f ( n ) = f ( p 1 a 1 p 2 a 2 . . . p m a m ) \therefore f(n) = f(p_1^{a_1}p_2^{a_2}...p_m^{a_m}) f(n)=f(p1a1p2a2...pmam)

= f ( p 1 a 1 ) f ( p 2 a 2 ) . . . f ( p m a m ) = f(p_1^{a_1})f(p_2^{a_2})...f(p_m^{a_m}) =f(p1a1)f(p2a2)...f(pmam)

= g ( p 1 a 1 ) g ( p 2 a 2 ) . . . g ( p m a m ) = g(p_1^{a_1})g(p_2^{a_2})...g(p_m^{a_m}) =g(p1a1)g(p2a2)...g(pmam)

= g ( p 1 a 1 p 2 a 2 . . . p m a m ) = g(p_1^{a_1}p_2^{a_2}...p_m^{a_m}) =g(p1a1p2a2...pmam)

= g ( n ) = g(n) =g(n)

综上所述,命题得证

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值