Day 31 134. 加油站 135. 分发糖果 860.柠檬水找零 406.根据身高重建队列

134. 加油站

贪心算法(方法一)

直接从全局进行贪心选择,情况如下:

  • 情况一:如果gas的总和小于cost总和,那么无论从哪里出发,一定是跑不了一圈的

  • 情况二:rest[i] = gas[i]-cost[i]为一天剩下的油,i从0开始计算累加到最后一站,如果累加没有出现负数,说明从0出发,油就没有断过,那么0就是起点。

  • 情况三:如果累加的最小值是负数,汽车就要从非0节点出发,从后向前,看哪个节点能把这个负数填平,能把这个负数填平的节点就是出发节点。

  • class Solution:
        def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:
            curSum = 0  # 当前累计的剩余油量
            minFuel = float('inf')  # 从起点出发,油箱里的油量最小值
            
            for i in range(len(gas)):
                rest = gas[i] - cost[i]
                curSum += rest
                if curSum < minFuel:
                    minFuel = curSum
            
            if curSum < 0:
                return -1  # 情况1:整个行程的总消耗大于总供给,无法完成一圈
            
            if minFuel >= 0:
                return 0  # 情况2:从起点出发到任何一个加油站时油箱的剩余油量都不会小于0,可以从起点出发完成一圈
            
            for i in range(len(gas) - 1, -1, -1):
                rest = gas[i] - cost[i]
                minFuel += rest
                if minFuel >= 0:
                    return i  # 情况3:找到一个位置使得从该位置出发油箱的剩余油量不会小于0,返回该位置的索引
            
            return -1  # 无法完成一圈

    135. 分发糖果

思路

这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼

先确定右边评分大于左边的情况(也就是从前向后遍历)

此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果

局部最优可以推出全局最优。

如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1

class Solution:
    def candy(self, ratings: List[int]) -> int:
        candyVec = [1] * len(ratings)
        
        # 从前向后遍历,处理右侧比左侧评分高的情况
        for i in range(1, len(ratings)):
            if ratings[i] > ratings[i - 1]:
                candyVec[i] = candyVec[i - 1] + 1
        
        # 从后向前遍历,处理左侧比右侧评分高的情况
        for i in range(len(ratings) - 2, -1, -1):
            if ratings[i] > ratings[i + 1]:
                candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1)
        
        # 统计结果
        result = sum(candyVec)
        return result

 

860.柠檬水找零

只需要维护三种金额的数量,5,10和20。

有如下三种情况:

  • 情况一:账单是5,直接收下。
  • 情况二:账单是10,消耗一个5,增加一个10
  • 情况三:账单是20,优先消耗一个10和一个5,如果不够,再消耗三个5

此时大家就发现 情况一,情况二,都是固定策略,都不用我们来做分析了,而唯一不确定的其实在情况三。

而情况三逻辑也不复杂甚至感觉纯模拟就可以了,其实情况三这里是有贪心的。

账单是20的情况,为什么要优先消耗一个10和一个5呢?

因为美元10只能给账单20找零,而美元5可以给账单10和账单20找零,美元5更万能!

所以局部最优:遇到账单20,优先消耗美元10,完成本次找零。全局最优:完成全部账单的找零。

局部最优可以推出全局最优,并找不出反例,那么就试试贪心算法!

class Solution:
    def lemonadeChange(self, bills: List[int]) -> bool:
        five = 0
        ten = 0
        twenty = 0
        
        for bill in bills:
            # 情况一:收到5美元
            if bill == 5:
                five += 1
            
            # 情况二:收到10美元
            if bill == 10:
                if five <= 0:
                    return False
                ten += 1
                five -= 1
            
            # 情况三:收到20美元
            if bill == 20:
                # 先尝试使用10美元和5美元找零
                if five > 0 and ten > 0:
                    five -= 1
                    ten -= 1
                    #twenty += 1
                # 如果无法使用10美元找零,则尝试使用三张5美元找零
                elif five >= 3:
                    five -= 3
                    #twenty += 1
                else:
                    return False
        
        return True

406.根据身高重建队列

思路

本题有两个维度,h和k,看到这种题目一定要想如何确定一个维度,然后再按照另一个维度重新排列。

其实如果大家认真做了135. 分发糖果 (opens new window),就会发现和此题有点点的像。

135. 分发糖果 (opens new window)我就强调过一次,遇到两个维度权衡的时候,一定要先确定一个维度,再确定另一个维度。

如果两个维度一起考虑一定会顾此失彼

对于本题相信大家困惑的点是先确定k还是先确定h呢,也就是究竟先按h排序呢,还是先按照k排序呢?

如果按照k来从小到大排序,排完之后,会发现k的排列并不符合条件,身高也不符合条件,两个维度哪一个都没确定下来。

那么按照身高h来排序呢,身高一定是从大到小排(身高相同的话则k小的站前面),让高个子在前面。

此时我们可以确定一个维度了,就是身高,前面的节点一定都比本节点高!

那么只需要按照k为下标重新插入队列就可以了,为什么呢?

以图中{5,2} 为例:

406.根据身高重建队列

按照身高排序之后,优先按身高高的people的k来插入,后序插入节点也不会影响前面已经插入的节点,最终按照k的规则完成了队列。

所以在按照身高从大到小排序后:

局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性

全局最优:最后都做完插入操作,整个队列满足题目队列属性

class Solution:
    def reconstructQueue(self, people: List[List[int]]) -> List[List[int]]:
    	# 先按照h维度的身高顺序从高到低排序。确定第一个维度
        # lambda返回的是一个元组:当-x[0](维度h)相同时,再根据x[1](维度k)从小到大排序
        people.sort(key=lambda x: (-x[0], x[1]))
        que = []
	
	# 根据每个元素的第二个维度k,贪心算法,进行插入
        # people已经排序过了:同一高度时k值小的排前面。
        for p in people:
            que.insert(p[1], p)
        return que

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值