defview(self, dtype=None,type=None):# real signature unknown; restored from __doc__"""
a.view(dtype=None, type=None)
New view of array with the same data.
具有相同数据的数组的新视图。
Parameters
----------
dtype : data-type or ndarray sub-class, optional
Data-type descriptor of the returned view, e.g., float32 or int16. The
default, None, results in the view having the same data-type as `a`.
This argument can also be specified as an ndarray sub-class, which
then specifies the type of the returned object (this is equivalent to
setting the ``type`` parameter).
数据类型或ndarray子类,可选
返回视图的数据类型描述符,例如float32或int16。
默认值为None(无),导致视图具有与a相同的数据类型。
此参数也可以指定为ndarray子类,然后指定返回对象的类型(这等效于设置“ type”参数)。
type : Python type, optional
Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.
返回视图的类型,例如ndarray或matrix。 同样,默认值None将导致类型保留。
Notes
-----
``a.view()`` is used two different ways:
``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view
of the array's memory with a different data-type. This can cause a
reinterpretation of the bytes of memory.
``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just
returns an instance of `ndarray_subclass` that looks at the same array
(same shape, dtype, etc.) This does not cause a reinterpretation of the
memory.
For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of
bytes per entry than the previous dtype (for example, converting a
regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of ``a`` (shown
by ``print(a)``). It also depends on exactly how ``a`` is stored in
memory. Therefore if ``a`` is C-ordered versus fortran-ordered, versus
defined as a slice or transpose, etc., the view may give different
results.
a.view()有两种不同的用法:
a.view(some_dtype)或a.view(dtype = some_dtype)构造具有不同数据类型的阵列内存视图。 这可能导致对内存字节的重新解释。
a.view(ndarray_subclass)或a.view(type = ndarray_subclass)只是返回一个ndarray_subclass实例,该实例看相同的数组(形状,dtype等)。这不会导致 记忆的重新诠释。
对于a.view(some_dtype),如果some_dtype每个条目的字节数与上一个dtype不同(例如,将常规数组转换为结构化数组),则视图的行为 不能仅从``a''的表面外观(由``print(a)``所示)来预测。 这也完全取决于``a''在内存中的存储方式。 因此,如果``a''是C顺序相对于fortran顺序,相对于定义为切片或转置等,则视图可能会给出不同的结果。
Examples
--------
>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
Viewing array data using a different type and dtype:
使用不同的type和dtype查看数组数据:
>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrix'>
(↑↑↑↑↑ 啥玩意,没看懂???)
Creating a view on a structured array so it can be used in calculations
在结构化数组上创建视图,以便可以在计算中使用它
>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])
Making changes to the view changes the underlying array
对视图进行更改会更改基础数组
>>> xv[0,1] = 20
>>> x
array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])
Using a view to convert an array to a recarray:
使用视图将数组转换为RecArray:
>>> z = x.view(np.recarray)
>>> z.a
array([1, 3], dtype=int8)
Views share data:
视图共享数据:
>>> x[0] = (9, 10)
>>> z[0]
(9, 10)
Views that change the dtype size (bytes per entry) should normally be
avoided on arrays defined by slices, transposes, fortran-ordering, etc.:
通常应在由切片,转置,fortran顺序等定义的数组上避免更改dtype大小
(每个条目的字节数)的视图:
>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
...
ValueError: To change to a dtype of a different size, the array must be C-contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])
"""pass