一、不可重集
#include<cstdio>
using namespace std;
const int maxn=1000+5;
void print_n(int n,int* A,int cur) //A是储存全排列的数组,cur是插入的位置
{
if(cur==n)
{
for(int i=0;i<n;i++) printf("%d ",A[i]);
printf("\n");
}
else
{
for(int i=1;i<=n;i++)
{
bool ok=1;
for(int j=0;j<cur;j++)
if(A[j]==i) ok=0;
if(ok) //往A中插入没有的数字
{
A[cur]=i;
print_n(n,A,cur+1);
}
}
}
}
int main()
{
int n,A[maxn];
scanf("%d",&n);
print_n(n,A,0);
return 0;
}
二、可重集
可重集排列注意如果数组中有重复的元素,自然不能用上一题的方法,可以数一下目标数组和输入数组的元素值比较一下大小。同时,如果是重复的元素是没有区别的,所以谁排在前面都是一样的,因此只有与之前元素不同的元素才能插入。
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=1000+5;
int A[maxn],G[maxn];
void print_n(int n,int* g,int* a,int cur)
{
if(cur==n)
{
for(int i=0;i<n;i++) printf("%d ",g[i]);
printf("\n");
}
else
{
for(int i=0;i<n;i++)
{
if(!i||a[i]!=a[i-1])
{
Int count1=0,count2=0;
for(int j=i;j<n;j++)
if(a[j]==a[i]) count2++;
for(int j=0;j<cur;j++)
if(g[j]==a[i]) count1++;
if(count1<count2)
{
g[cur]=a[i];
print_n(n,g,a,cur+1);
}
}
}
}
}
int main()
{
int n;
scanf("%d",&n);
for(int i=0;i<n;i++) scanf("%d",&A[i]);
sort(A,A+n);
print_n(n,G,A,0);
return 0;
}
三、
除了这两种方法还有一种:利用STL中的next_permutation(p,p+n),包含头文件<algorithm>
boolean next_permutation(a.begin(),a.end()) 该函数是以输入字符串中的字符所构建的按字典顺序全排列中,判断当前字符串之后是否还有下一个字符串 如果next_permutation的执行次数少于全排列的个数,返回true 例如 a="abc" 全排列有 "abc" "acb" "bac" "bca" "cab" "cba" 执行一次next_permutation 返回true a变成 "acb" 再执行一次next_permutation 返回true a变成 "bac" ... 当执行到a="cba" 时 由于这已经是全排列的最后一个字符串,所以 再次执行next_permutation 则返回false
#include<cstdio>
#include<algorithm>
using namespace std;
int main(){
int n,p[10];
scanf("%d",&n);
for(int i=0;i<n;i++) scanf("%d",&p[i]);
sort(p,p+n);
do{
for(int i=0;i<n;i++) printf("%d ",p[i]);
printf("\n");
}while(next_permutation(p,p+n));
return 0;
}
总结:枚举排列的常用方法就是:递归和next_permutation。