POJ3279 Fliptile

题意:

给一个由0,1组成的m*n的矩阵,要将所有的1转为0,求最小步数

每翻转一个,它的上下左右都会跟着翻转

思路:

二进制枚举第一行的所有情况,用一个二维数组记录翻转情况,翻转为1,不翻转为0

从第二行开始,判断(i - 1, j)是否为1,为1的话就要翻转(i, j),因为此时只有(i, j)可以影响到(i - 1, j)

最后判断一下最后一行是否全部为0

在所有符合的情况下选择最小的

代码如下:

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int INF = 1e7 + 10;
int m, n;
int a[20][20], mp[20][20], s[20][20];

int f[5][2] = {0, 1, 1, 0, 0, 0, -1, 0, 0, -1};

bool judge(int x, int y)//判断(i, j)的正反 
{
	int cnt = a[x][y];
	for(int i = 0; i < 5; i++)
	{
		int xx = x + f[i][0];
		int yy = y + f[i][1];
		if(xx >= 0 && xx < m && yy >= 0 && yy < n)
            cnt += mp[xx][yy];
	}
	return cnt % 2;
}

int main()
{
	while(~scanf("%d%d", &m, &n))
	{
		for(int i = 0; i < m; i++)
		    for(int j = 0; j < n; j++)
		        scanf("%d", &a[i][j]);
        int ans = INF;
        bool flag = false;
        for(int i = 0; i < (1 << n); i++)
        {
        	memset(mp, 0, sizeof(0));
        	int tmp = 0;
        	for(int j = 0; j < n; j++)
			{
				mp[0][n - j - 1] = (i >> j) & 1;
				tmp += mp[0][n - j - 1];
			} 
			for(int j = 1; j < m; j++)
			{
				for(int k = 0; k < n; k++)
				{
					if(judge(j - 1, k))
					{
						mp[j][k] = 1;
						tmp++;
					}
				}
			}
			flag = false;
			for(int j = 0; j < n; j++)//判断最后一行是否都为0
			{
				if(judge(m - 1, j))
				{
					flag = true;  break;
				} 
			}
			if(!flag && tmp < ans)
			{
				ans = tmp;
				memcpy(s, mp, sizeof(mp));
			}  
        }
        if(ans == INF) puts("IMPOSSIBLE");
        else
		{
			for(int i = 0; i < m; i++)
			{
				for(int j = 0; j < n; j++)
				{
					printf("%d%c", s[i][j], j == n - 1?'\n':' ');
				}
			}
		} 
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值