题意:
给一个由0,1组成的m*n的矩阵,要将所有的1转为0,求最小步数
每翻转一个,它的上下左右都会跟着翻转
思路:
二进制枚举第一行的所有情况,用一个二维数组记录翻转情况,翻转为1,不翻转为0
从第二行开始,判断(i - 1, j)是否为1,为1的话就要翻转(i, j),因为此时只有(i, j)可以影响到(i - 1, j)
最后判断一下最后一行是否全部为0
在所有符合的情况下选择最小的
代码如下:
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int INF = 1e7 + 10;
int m, n;
int a[20][20], mp[20][20], s[20][20];
int f[5][2] = {0, 1, 1, 0, 0, 0, -1, 0, 0, -1};
bool judge(int x, int y)//判断(i, j)的正反
{
int cnt = a[x][y];
for(int i = 0; i < 5; i++)
{
int xx = x + f[i][0];
int yy = y + f[i][1];
if(xx >= 0 && xx < m && yy >= 0 && yy < n)
cnt += mp[xx][yy];
}
return cnt % 2;
}
int main()
{
while(~scanf("%d%d", &m, &n))
{
for(int i = 0; i < m; i++)
for(int j = 0; j < n; j++)
scanf("%d", &a[i][j]);
int ans = INF;
bool flag = false;
for(int i = 0; i < (1 << n); i++)
{
memset(mp, 0, sizeof(0));
int tmp = 0;
for(int j = 0; j < n; j++)
{
mp[0][n - j - 1] = (i >> j) & 1;
tmp += mp[0][n - j - 1];
}
for(int j = 1; j < m; j++)
{
for(int k = 0; k < n; k++)
{
if(judge(j - 1, k))
{
mp[j][k] = 1;
tmp++;
}
}
}
flag = false;
for(int j = 0; j < n; j++)//判断最后一行是否都为0
{
if(judge(m - 1, j))
{
flag = true; break;
}
}
if(!flag && tmp < ans)
{
ans = tmp;
memcpy(s, mp, sizeof(mp));
}
}
if(ans == INF) puts("IMPOSSIBLE");
else
{
for(int i = 0; i < m; i++)
{
for(int j = 0; j < n; j++)
{
printf("%d%c", s[i][j], j == n - 1?'\n':' ');
}
}
}
}
return 0;
}