汽车之家 x StarRocks:极速实时数据分析实践

汽车之家选用StarRocks作为实时OLAP分析引擎,解决实时数据分析痛点,如Flink聚合不灵活、Kylin明细查询不足、TiDB在线计算压力大。StarRocks以其灵活查询、高性能、低运维成本脱颖而出,已在推荐服务实时监控和搜索实时效果分析等场景中取得成功应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

汽车之家(NYSE:ATHM)成立于2005年,为消费者提供优质的汽车消费和汽车生活服务,助力中国汽车产业蓬勃发展。我们致力于通过产品服务、数据技术、生态规则和资源为用户和 客户赋能,建设“车内容、车交易、车金融、车生活” 4个圈, 建立以数据和技术为核心的智能汽车生态圈,正式迈向智能化的3.0时代。

汽车之家目前在智能推荐的效果分析,物料点击、曝光、计算点击率、流量宽表等场景,对实时分析的需求日益强烈。经过多轮的探索,最终选定 StarRocks 作为实时 OLAP 分析引擎,实现了对数据的秒级实时分析。

“ 作者:邸星星,

汽车之家实时计算平台负责人 ”

实时数据分析的现状

在汽车之家内部,实时数据的来源主要是三部分:

  • 手机端户行为的日志;
  • 应用程序的服务端的日志;
  • MySQL、SQLServer数据。

实时数据分析场景,目前面临的一些痛点包括:

  • 使用 Flink 做指标聚合,Flink 聚合不灵活,面对需求的时候开发成本比较高的,面对多变的需求,经常需要重复开发;
  • Kylin 支持指标预计算,并发支持较好,但是不能够支持高效的明细数据查询。在一些需要下钻或者获取明细数据的场景支撑的不够好;
  • TiDB 不支持预聚合模型,某些数据量大的场景,聚合指标需要在线计算。在线计算会导致服务器压力瞬间增大,而且查询性能不稳定,取决于参与计算的数据量和当时服务器的负载情况。

为什么选择 StarRocks

在这里插入图片描述
上图是几个 OLAP 引擎的横向对比。StarRocks 作为一款新兴 OLAP 产品,具有以下几个突出的优点:

  • 查询场景灵活:StarRocks 所能够支撑的查询场景比较灵活。既能够从明细数据进行聚合分析,也能基于预聚合的模型去提前构建好,加速查询;
  • 兼容 MySQL 协议,平时使用 MySQL 的客户端就能进行查询和简单的运维:StarRocks 兼容 MySQL 协议,使用成本、运维成本都比较低;
  • 全面向量化引擎,查询性能好:查询性能高,并且能支持较高的并发和吞吐;
  • 架构精简,易于运维。

但是 StarRocks 作为 OLAP 界的“年轻人”,也存在一些不太成熟的方面࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值