Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence.
Example:
Input: [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Note:
There may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
最长递增子序列 (LIS),这里的子序列不要求连续。
**方法一:**暴力枚举,那应该是
O
(
n
!
)
O(n!)
O(n!)的复杂度,也就是枚举子集再判断是不是递增子序列并且是否最长。
方法二:
动态规划。用dp[i]代表以位置
i
i
i 的元素结尾时,能够得到的LIS长度。 dp[
i
i
i]一定是从dp[
j
j
j]得到的, 其中
j
j
j满足
j
<
i
,
n
u
m
s
[
j
]
<
n
u
m
s
[
i
]
j<i, nums[j] < nums[i]
j<i,nums[j]<nums[i] 。这里强调的是LIS这个问题具有最优子结构。
下面的算法复杂度是
O
(
n
2
)
O(n^2)
O(n2)
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if(nums.empty()) return 0;
int n = nums.size(), best;
vector<int> dp(n, 0);
dp[0] = 1;
for(int i = 1; i < n; ++i){
best = 0;
for(int j = 0; j < i; ++j){
if(nums[j] >= nums[i]) continue;
best = max(best, dp[j]);
} dp[i] = best+1;
} return *max_element(dp.begin(), dp.end());
}
};
方法3:
针对上面的动态规划算法,在查找下标
j
j
j 时,通过二分查找做一些改进。
dp的含义不变,dp[i]代表以位置
i
i
i 的元素结尾时,能够得到的LIS长度。 新定义一个tail。
tail受到遍历的下标
i
i
i的影响,tail[
j
j
j]代表在元素[0, …,
i
i
i-1]中,长度为
j
j
j+1的LIS结尾元素的最小值。这里的二分法如果太理解,可以回顾一下找有序数组中lower_bound的过程。
此时下面的算法复杂度为
O
(
n
l
o
g
n
)
O(n log n)
O(nlogn)
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size(), best;
if(n <= 1) return n;
vector<int> dp(n, 0), tail(n, 0);
// dp[0] = 1; tail[0] = nums[0];
int e = -1; // 当前tail的结尾位置
for(int i = 0; i < n; ++i){
dp[i] = bisec(tail, nums[i], e);
} return *max_element(dp.begin(), dp.end());
}
private:
int bisec(vector<int>& tail, int target, int&e){
/* 其实就是找lower_bound的代码,也就是找target元素应该插入在tail数组中的位置 */
int l = 0, r = e;
while(l <= r){
int m = l + ((r-l)>>1);
if(tail[m] < target) l = m+1;
else r = m-1;
} tail[l] = target;
e = max(e, l); // 更新tail数组的结尾位置
return l+1;
}
};