最长上升子序列 ( Longest Increasing Subsequence)

Longest Increasing Subsequence

Given an unsorted array of integers, find the length of longest increasing subsequence.

Example:

Input: [10,9,2,5,3,7,101,18]
Output: 4 
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4. 

Note:

There may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?

最长递增子序列 (LIS),这里的子序列不要求连续。
**方法一:**暴力枚举,那应该是 O ( n ! ) O(n!) O(n!)的复杂度,也就是枚举子集再判断是不是递增子序列并且是否最长。

方法二:
动态规划。用dp[i]代表以位置 i i i 的元素结尾时,能够得到的LIS长度。 dp[ i i i]一定是从dp[ j j j]得到的, 其中 j j j满足 j &lt; i , n u m s [ j ] &lt; n u m s [ i ] j&lt;i, nums[j] &lt; nums[i] j<i,nums[j]<nums[i] 。这里强调的是LIS这个问题具有最优子结构。
下面的算法复杂度是 O ( n 2 ) O(n^2) O(n2)

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        if(nums.empty()) return 0;
        int n = nums.size(), best;
        vector<int> dp(n, 0);
        dp[0] = 1;
        for(int i = 1; i < n; ++i){
            best = 0;
            for(int j = 0; j < i; ++j){
                if(nums[j] >= nums[i]) continue;
                best = max(best, dp[j]);
            } dp[i] = best+1;
        } return *max_element(dp.begin(), dp.end());
    }
};

方法3:
针对上面的动态规划算法,在查找下标 j j j 时,通过二分查找做一些改进。
dp的含义不变,dp[i]代表以位置 i i i 的元素结尾时,能够得到的LIS长度。 新定义一个tail。
tail受到遍历的下标 i i i的影响,tail[ j j j]代表在元素[0, …, i i i-1]中,长度为 j j j+1的LIS结尾元素的最小值。这里的二分法如果太理解,可以回顾一下找有序数组中lower_bound的过程。
此时下面的算法复杂度为 O ( n l o g n ) O(n log n) O(nlogn)

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int n = nums.size(), best;
        if(n <= 1) return n;
        vector<int> dp(n, 0), tail(n, 0);
        // dp[0] = 1; tail[0] = nums[0];
        int e = -1;  // 当前tail的结尾位置
        for(int i = 0; i < n; ++i){
            dp[i] = bisec(tail, nums[i], e);
        } return *max_element(dp.begin(), dp.end());
    }
private:
    int bisec(vector<int>& tail, int target, int&e){
    	/* 其实就是找lower_bound的代码,也就是找target元素应该插入在tail数组中的位置 */
        int l = 0, r = e;
        while(l <= r){
            int m = l + ((r-l)>>1);
            if(tail[m] < target) l = m+1;
            else r = m-1;
        } tail[l] = target;
        e = max(e, l);  // 更新tail数组的结尾位置
        return l+1;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值