Given a binary tree, return the inorder traversal of its nodes' values.
For example:
Given binary tree {1,#,2,3}
,
1 \ 2 / 3
return [1,3,2]
.
Note: Recursive solution is trivial, could you do it iteratively?
Binary Search Tree:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- The left and right subtree each must also be a binary search tree.
- Each node can have up to two successor nodes.
- There must be no duplicate nodes.
- A unique path exists from the root to every other node.
- In-order (symmetric)[edit]
- Traverse the left subtree by recursively calling the in-order function.
- Display the data part of root element (or current element).
- Traverse the right subtree by recursively calling the in-order function.
n-order: A, B, C, D, E, F, G, H, I
Recursion Solution:
Time complexityO(n), Space Complexity O(logn)。
public ArrayList<Integer> inorderTraversal(TreeNode root) {
ArrayList<Integer> res = new ArrayList<Integer>();
helper(root, res);
return res;
}
private void helper(TreeNode root, ArrayList<Integer> res)
{
if(root == null)
return;
helper(root.left,res);
res.add(root.val);
helper(root.right,res);
}
Iteration Solution:
public ArrayList<Integer> inorderTraversal(TreeNode root) {
ArrayList<Integer> res = new ArrayList<Integer>();
LinkedList<TreeNode> stack = new LinkedList<TreeNode>();
while(root!=null || !stack.isEmpty())
{
if(root!=null)
{
stack.push(root);
root = root.left;
}
else
{
root = stack.pop();
res.add(root.val);
root = root.right;
}
}
return res;
}