Leetcode152. Maximum Product Subarray

题意:求最大子数组之积

思路:

1.求出所有子数组的乘积,找出最大值

2.如何得到所有子数组的成绩呢,子数组可以表示为A[i..j],i可以取1...n,j可以取i..n,因此有n*(n-1)/2个子数组。每个子数组平均有n/2个元素。如果采用愣头青算法,那么时间复杂度就是O(n^3)

3.经过分析,按2中的算法,在计算A[i..j]时实际上计算了A[i..i+1],A[i..i+2]...A[i,j],因此只要消除这种重复,就能够优化时间复杂度。很明显,计算A[i..j]时用到了A[i..i+1],即问题的求解可转化成子问题的求解,也就是符合动态规划的问题。

递归式:f(i,i+len) = f(i,i+len-1)*A[i+len],因此可以使用额外数组save[i][j]保存以i开头,长度为j的子数组之积,同时由于f(i,i+len)只与f(i,i+len-1)相关,因此只需要额外的一维数组save[i]即可。

具体代码如下:

int maxProduct(vector<int>& nums) {
        int max = -1000000000, size = nums.size();
        vector<int> save(size);
        for(int i=0; i<size; i++)
            save[i] = 1;
        for(int i=0; i<size; i++)//len-1
            for(int j=0; j<size; j++)//数组下标
            {
                if(i+j>=size)
                    break;
                save[j] = save[j]*nums[j+i];
                if(max<save[j])
                    max = save[j];
            }        
        return max;  
    }

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值