题意:求最大子数组之积
思路:
1.求出所有子数组的乘积,找出最大值
2.如何得到所有子数组的成绩呢,子数组可以表示为A[i..j],i可以取1...n,j可以取i..n,因此有n*(n-1)/2个子数组。每个子数组平均有n/2个元素。如果采用愣头青算法,那么时间复杂度就是O(n^3)
3.经过分析,按2中的算法,在计算A[i..j]时实际上计算了A[i..i+1],A[i..i+2]...A[i,j],因此只要消除这种重复,就能够优化时间复杂度。很明显,计算A[i..j]时用到了A[i..i+1],即问题的求解可转化成子问题的求解,也就是符合动态规划的问题。
递归式:f(i,i+len) = f(i,i+len-1)*A[i+len],因此可以使用额外数组save[i][j]保存以i开头,长度为j的子数组之积,同时由于f(i,i+len)只与f(i,i+len-1)相关,因此只需要额外的一维数组save[i]即可。
具体代码如下:
int maxProduct(vector<int>& nums) {
int max = -1000000000, size = nums.size();
vector<int> save(size);
for(int i=0; i<size; i++)
save[i] = 1;
for(int i=0; i<size; i++)//len-1
for(int j=0; j<size; j++)//数组下标
{
if(i+j>=size)
break;
save[j] = save[j]*nums[j+i];
if(max<save[j])
max = save[j];
}
return max;
}